agrees with Bell and Weaver (2002) that carcass of 1520 g/body weight is 65.5 %. Shamsu Abdul ElAzeem (2005) suggested that chicken carcasses fed with high content of fiber with high or low protein content have proportion of carcass weight with higher bone mass. Chickens fed with a low content of fiber, both with content high or low protein.

Abdominal fat percentage. Abdominal fat percentage of the broilers based on administration level and processing method of skipjack gill during this study is given in Table 3. Results show that gill meal administration level and processing method interaction, administration level processing method did not significantly affected (P>0.05) abdominal fat percentage of broilers. Average of abdominal fat percentage was in common range, 1.87 to 1.97%. North (1984) also showed that the abdominal fat content of the broiler should not be higher than 4%. It reflected that the level of the administration level and the processing methods in this study produces the abdominal fat lower than 4%, meaning that the abdominal fat of the broiler is the normal range.

In the fat developing process, the body fat is produced from carbohydrate, protein, and fat after the carbohydrate is absorbed in glucose form and glycogenic glucose is changed to glycogen and then transferred to the liver to be stored as glycogen, while some fat enters the circulatory system through the lymphatic system and can directly stored in the tissue. Since each certain cell possesses the highest limit of protein storage, excessive amino acid will be degraded to be energy source and will stored as body fat. Non-significantly different abdominal fat could result from the fact that after the addition of 22% protein and metabolizable energy of 3200 Kcal/kg. Beside for major living need excessive energy is then stored in fat form occurring in the body cavity and attaching to the skin. Resnawati (2004) stated that the percent of abdominal fat at 5 weeks old ranged from 1.5 to 2.5. The broilers used in the study had the same age and lived in the same environment. The skipjack tuna (Katsuwonus pelamis L) gill waste through steaming processing method and administration of 12% as a replacement of anchovy meal protein in the ration gave good response to the percent of carcass weight and abdominal fat.

CONCLUSION

This study concluded that skipjack tuna gill meal can replace up to 12% of fish meal in broiler diets without affecting carcass quality of broiler meat and it would be economically profitable to include STGM in feed mixtures for broiler production as part of their balanced diet.

REFERENCES