International Network For Natural Sciences

International Journal of Biosciences (IJB)

ISSN: 2220-6655 (Print)
2222-5234 (Online)

SCOPE:
- Plant and Animal Sciences
- Biotechnology
- Biology, Biochemistry, Genetics, Microbiology
- Aquatic biology, Botany, Zoology, Ecology
- Agricultural sciences, Mycology, Fisheries
- Molecular biology, Cell biology and Pathology

Indexed/Abstracting:
- Crossref
- DOAJ
- OAI

IMPACT FACTOR: 0.553 | Universal IF
FREQUENCY: 12 issues per year

ISI Link: http://mjl.clarivate.com/cgi-bin/jrnlist/jirresults.cgi?PC=MASTER&Full=international%20journal%20of%20biosciences

Editor in Chief
Dr. Ahmad Kabir
BSc and MSc (Bangladesh), MSc (Sweden), PhD (Australia)
E-mail: ijb@innspub.net

Advisory Board Members
- Dr. Anubrata Ghosal, Massachusetts Institute of Technology (MIT), United States
- Dr. Agnieszka Zienkiewicz, Dept. of Plant Physiology and Molecular Biology of Plants, Nicolaus Copernicus University, Poland
- Dr. Abul Mandal, School of Life Sciences, University of Skovde, Sweden
Volume 6, Number 3, February 2015 – IJB

Essential oil production of dill affected by different intercropping patterns with berseem clover and harvesting times
Parviz Karimzadeh, Saeid Zehtab-Salmasi, Jalil Shafagh-Kalvanagh, Hossein Jannamamadi
Int. J. Biosci. 6(3), 1-6. (Full Text) (http://www.innspub.net/wp-content/uploads/2015/02/IJB-V6No3-p1-6.pdf)
doi: http://dx.doi.org/10.12692/ijb/6.3.1-6 (http://dx.doi.org/10.12692/ijb/6.3.1-6)

Effects of elemental sulfur and soil compaction on microbial biomass carbon and soil enzyme activities
Shokrofeh Rezaei, Kazem Khavazi, Mohammad Taher Nezami, Saeed Saadat
doi: http://dx.doi.org/10.12692/ijb/6.3.7-14 (http://dx.doi.org/10.12692/ijb/6.3.7-14)

Comprehensive surviving on application and diversity of biofilms in seafood (review)
Zeinab Noorhashemabad, Seyed Mehdi Ojagh, Alireza Alishahi
doi: http://dx.doi.org/10.12692/ijb/6.3.15-30 (http://dx.doi.org/10.12692/ijb/6.3.15-30)

Increasing duck egg production using grow enhancer treatment
Jeane Loing, Budi Setiawan, Muhamin Wahib, Ratya Anindhita, Eddy Lengkong
Int. J. Biosci. 6(3), 31-35. (Full Text) (http://www.innspub.net/wp-content/uploads/2015/02/IJB-V6No3-p31-35.pdf)
doi: http://dx.doi.org/10.12692/ijb/6.3.31-35 (http://dx.doi.org/10.12692/ijb/6.3.31-35)
Response of cut carnation (Dianthus Caryophyllus L. cv. Tempo) to sesame oils and antimicrobial compounds

Davood Hashemabadi, Behzad Kaviani, Ali Shirinpour, Dina Yaghoobi

Int. J. Biosci. 6(3), 36-44. (Full Text) (http://www.innspub.net/wp-content/uploads/2015/02/IJB-V6No3-p36-44.pdf)
doi: http://dx.doi.org/10.12692/ijb/6.3.36-44 (http://dx.doi.org/10.12692/ijb/6.3.36-44)

Effect of freezing tolerance in some dwarf selected mahaleb genotypes

Elnaz Ganj Moghadam, Esmail Faramarzi, Ahmad Fahadan, Zahra Shabani

doi: http://dx.doi.org/10.12692/ijb/6.3.45-53 (http://dx.doi.org/10.12692/ijb/6.3.45-53)

Effect of gibberlic acid (GA3) foliar on some physiological traits and amount of pigments in Brassica napus L

Amirhossein Khazeh, Zahra Khazeh, Hamid Jabari, Maryam Teymur Gashtegany, Mohsen Hashemybagha

Int. J. Biosci. 6(3), 54-61. (Full Text) (http://www.innspub.net/wp-content/uploads/2015/02/IJB-V6No3-p54-61.pdf)
doi: http://dx.doi.org/10.12692/ijb/6.3.54-61 (http://dx.doi.org/10.12692/ijb/6.3.54-61)

Effect of gibberlic acid (GA3) foliar on some physiological traits and amount of pigments in Vigna radiate L

Amirhossein Khazeh

doi: http://dx.doi.org/10.12692/ijb/6.3.62-69 (http://dx.doi.org/10.12692/ijb/6.3.62-69)

Response of yield and yield components of rice (Oryza sativa L. cv. Shiriodi) to different phosphate solubilizing microorganisms and mineral phosphorus

Hossein Ebrahim Chamani, Esmaeil Yasari, Hammatollah Pirdast

Int. J. Biosci. 6(3), 70-75. (Full Text) (http://www.innspub.net/wp-content/uploads/2015/02/IJB-V6No3-p70-75.pdf)
doi: http://dx.doi.org/10.12692/ijb/6.3.70-75 (http://dx.doi.org/10.12692/ijb/6.3.70-75)

Effect of rooting beds, IBA concentrations and bottom heat on rooting of plane tree (Plantanus orientalis L.) cuttings

Leila Tagipoor, Hasan Mahmoodzadeh, Zohre Jabarzadeh

leeuwenberg-in-lore-lindunational-park-area-indonesia/ (1,186)

- Abundance, length-weight relationships and...

- Identification of disordered regions and potential active...

- Nutritional assessment of semi-fermented fish product (Chepa)

2/12/2018, 4:27 PM
Effective and economic storage of wheat seed in straw-clay bins
Shakeel Hussain Chattha, Che Man Hasfalina, Teang Shui Lee, Mirani, Muhammad Razif Mahdi
Int. J. Biosci. 6(3), 76-82. (Full Text) (http://www.innspub.net/uploads/2015/02/IJB-V6No3-p76-82.pdf)
doi: http://dx.doi.org/10.12692/ijb/6.3.76-82 (http://dx.doi.org/10.12692/ijb/6.3.76-82)

Optimization of extraction the red cabbage extract technology, assisted by response surface method
Reihaneh Ahmadzadeh Ghaavidel, Zahra Sheikholeslami, Saeed Ahmadi
Int. J. Biosci. 6(3), 83-93. (Full Text) (http://www.innspub.net/uploads/2015/02/IJB-V6No3-p83-93.pdf)

Assessment of allelopathic effects of juglans regia properties of four leguminosase species
Melika Hashemi, Mojtaba Akhavan Armaki
Int. J. Biosci. 6(3), 94-100. (Full Text) (http://www.innspub.net/uploads/2015/02/IJB-V6No3-p94-100.pdf)
doi: http://dx.doi.org/10.12692/ijb/6.3.94-100 (http://dx.doi.org/10.12692/ijb/6.3.94-100)

The effect of biological promoters on thyme plant in different locations
Mehdi Rezaei Sarkhosh, Bohloul Abbaszadeh, Mohammad Raja Arefzadeh, Rezaei
doi: http://dx.doi.org/10.12692/ijb/6.3.101-108 (http://dx.doi.org/10.12692/ijb/6.3.101-108)

Resistance to fasting and effect of delaying first feeding on growth and survival in African catfish Heterobranchus bidorsalis arvall (Geoffroy Saint-Hilaire, 1804)
Yao Laurent Alla, Nobah Céline Sidonie Koko, Kouamé Frédéric Affoumou, Kedi Roland Lebon, Méléony Célestin Ble, Ouattara Mamadou
Int. J. Biosci. 6(3), 116-123. (Full Text) (http://www.innspub.net/uploads/2015/02/IJB-V6No3-p116-123.pdf)
doi: http://dx.doi.org/10.12692/ijb/6.3.116-123 (http://dx.doi.org/10.12692/ijb/6.3.116-123)
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Journal and Volume/Issue/URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect of locally produced honey on serum levels of glucose, triglyceride, cholesterol, HDL, VLDL, and LDL in alloxanized diabetic rats</td>
<td>Arash Alizadeh Yegani, Hamidreza Alipour Kheirkhah, Ahmad Koohi, Özge Öztürk</td>
<td>Int. J. Biosci. 6(3), 137-145. (Full Text) http://www.innspub.net/volume-6-number-3-february-2015-ijb/</td>
</tr>
<tr>
<td>Correlation between yield and other treats in sugar beet under application of different biofertilizers and irrigation</td>
<td>Amin Farnia, Gholamreza Hashemi</td>
<td>Int. J. Biosci. 6(3), 146-152. (Full Text) http://www.innspub.net/volume-6-number-3-february-2015-ijb/</td>
</tr>
<tr>
<td>Effect of phosphate fertilizer on quality and quantity of berseem clover forage under pseudomonas strains inoculations</td>
<td>Mohammad Hossein Ansari, Shahrokh Ghadimi</td>
<td>Int. J. Biosci. 6(3), 162-171. (Full Text) http://www.innspub.net/volume-6-number-3-february-2015-ijb/</td>
</tr>
</tbody>
</table>
Introduction

Duck breeding is one of the possible means of breaking out from poverty in developing countries (Pym et al., 2002). Ducks are efficient converters of small-scale agricultural products besides legumes, vegetables and grain. Duck's eggs are profitable to the poor farmers and housewives, who can use it for education and health care of their children (Rahman et al., 2010).

Ducks in Langowan, Minahasa, North Sulawesi, Indonesia provides self-employment for landless and small farmers. Breeding ducks in this area gives benefit for the farmers. The geographical location, climate and environmental conditions of wetland paddy field area are favorable for success a duck production. This is due to the abundant natural feed resources and water logged areas. The natural feed resources such as aquatic weeds, various types of insects, tadpoles, earthworms, green forages and different fallen grains are good sources of nutrients for ducks (Farrell et al., 1985; Rahman et al., 2010).

The farmers in Lanwongan plant three variety of Oryza sativa L. (IR64), Serayu and Super Win with or without grow enhancer as organic fertilizer. There is a great potential of improving the productivity of ducks' egg in wetland paddy field through supplementary feeding. As duck egg is potential commodity in Indonesia, it contains relatively less water and higher percentage of proteins and fats in the yolk, albumen and total contents of egg compared to chicken eggs (USDA, 2002).

Duck farming have been familiar among the rice-field farmer, mostly raised in small-scale traditional technology as an additional activity between their rice crop routines. The farmers used grow enhancer as organic fertilizer in the farming area. The result shows significant different of paddy production when using grow enhancer. Therefore, we conducted this research to assess the profile of duck farmers and the effect of grow enhancer on duck's egg production. Increasing duck egg production is still challenging today. Manipulation of feeding management is one of the easiest and the cheapest strategy for increasing the duck's egg production. To know the significant effect of duck's egg production using grow enhancer, evaluation on treated and untreated duck is conducted in this research. Increasing duck egg production in Lanwongan was expected to contribute to their household income (Susilowati, 2014).

Material and methods

Experimental design and treatment

The experiment was conducted on January to March 2013 in the of wetland paddy field of 33 respondents in Sub-district of Langowan, Minahasa Regency, North Sulawesi, Indonesia. Before the respondent's ducks were experimented with grow enhancer and compared to the untreated duck, the profile of duck farmers were surveyed to assess the distinction character of duck farmer in Lanwongan.

Ducks Feeding and Care

Feeds were supplied from wetland area. Proper care and management practices were referred to the traditional ducks care. The ducks farming manage by the researcher and farmers throughout the experimental period.

Data Collection and Data Analysis of Egg Production

The freshly laid eggs of ducks were counted as informed by the farmers. Statistical analyses were performed using the software package of SPSS for Windows (SPSS Inc., Chicago, IL.).

Result and discussion

Correlation between farming area and amount of duck

Before knowing the effect of grow enhancer in duck egg production, evaluation of duck farmers profile is important to assess the correlation on amount of duck that they had with the farming area for growing duck. Environment condition is important for duck's growing and increasing the duck egg production. The profile of duck farmers is summarized and presented in Table 1. It was found that the majority of the respondents (54.54%) are old farmer group (>50 years) then (42.42%) following by middle aged group.
(35-50 years) and 3.03% were from young farmers (<35 years). They used paddy field area for farming the duck. Every respondent had different farming area for feeding their duck. There are correlation between the width of farming area and amount of the duck, as R² = 0.77 (Figure 3). It means that the farmer that had wider area tend to have higher duck volume.

Table 1. Profile of duck farmer in Langowan, Minahasa.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Respondent (n)</th>
<th>Respondent (%)</th>
<th>average area width (m²)</th>
<th>Average duck volume (individu)</th>
</tr>
</thead>
<tbody>
<tr>
<td><35</td>
<td>2</td>
<td>6.04</td>
<td>490.00</td>
<td>193.00</td>
</tr>
<tr>
<td>35-50</td>
<td>14</td>
<td>42.42</td>
<td>4753.27</td>
<td>233.21</td>
</tr>
<tr>
<td>>50</td>
<td>18</td>
<td>54.42</td>
<td>6797.22</td>
<td>207.77</td>
</tr>
</tbody>
</table>

Effect of grow enhancer in duck egg production

Increasing egg production in duck is challenges for the duck farmer. The easiest and cheapest way for increasing egg production is managed the feeding, especially, the nutrition of feed. In this experiment, grow enhancer was used for triggering the egg production. There are two groups of farmer in this study. First, the farmers that do not use D.I™ grow enhancer in duck feed. Secondly, the farmers that combine the feed with the D.I™ grow enhancer (Supplementary 1). To know the significance effect from grow enhancer, we used statistical analysis of independent-sample T test (Supplementary 2). The result showed that egg production from treated duck was higher than untreated duck (Figure 2). Egg production from non D.I™ grow enhancer feed was 31.91%, a half from D.I™ grow enhancer modified fed duck for 68.08%. Previous studies have also shown that soy isoflavone supplementation improved egg production and egg quality (Saitoh et al., 2001; Zhao et al., 2005). In this experiment, increased duck egg production could be due to the nutritional addition of D.I™ grow enhancer which affect to the duck egg production.

Conclusion

The majority of duck farmers is old aged group and there is correlation between farming area and amount of duck. The duck egg production can increased 2 times when treating with grow enhancer from 38% to 68%. There are great potentials for an improvement of duck egg production in Langowan Minahasa by means of nutritional and management engineering.

![Fig. 1. Correlation between area width and duck volume.](image-url)
Fig. 2. The egg production of untreated and treated duck with DJ grow enhancer.

References

http://dx.doi.org/10.3329/bjas.v39i1-2.9690

Metzer Farms. 2014. Old Stage Road Gonzales, CA 93926.
http://www.metzerfarms.com/ContactMetzer.cfm

http://dx.doi.org/10.1016/j.bbagen.2004.06.006

http://ndb.nal.usda.gov/

http://dx.doi.org/10.1080/00071660500064808
Appendix

Supplementary 1. Statistic of untreated and treated duck with grow enhancer.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated duck</td>
<td>33</td>
<td>7102.91</td>
<td>4489.675</td>
<td>781.552</td>
</tr>
<tr>
<td>Treated duck</td>
<td>33</td>
<td>15152.00</td>
<td>9525.802</td>
<td>1658.229</td>
</tr>
</tbody>
</table>

Supplementary 2. Independent-sample T test of treatment.

<table>
<thead>
<tr>
<th></th>
<th>Levene's Test for Equality of Variances</th>
<th>t-test for Equality of Means</th>
<th>95% Confidence Interval of the Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
<td>t</td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>5.897</td>
<td>.018</td>
<td>-4.391</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td></td>
<td></td>
<td>-4.391</td>
</tr>
</tbody>
</table>