0

A Conference by Faculty of Engineering Sriwijaya University ISBN 979-587-621-1

PROCEDINGS SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY [SICEST 2016]

Bangka Island Indonesia, 8-10 November 2016

0

A Conference by Faculty of Engineering Sriwijaya University ISBN 979-587-621-1

PROCEDINGS SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY [SICEST 2016]

Bangka Island Indonesia, 8-10 November 2016

SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY - 2016

OVERVIEW

SICEST (Sriwijaya International Conference on Engineering, Science and Technology) is the first regular conference organized by The Faculty of Engineering Sriwijaya University focuses on engineering, science and technology in innovation and development.

The objectives of the conference are:

☑To bring together experts active in engineering, science and technology
 ☑To explore research findings in the field of engineering, science and technology
 ☑To discuss current development in innovation of Engineering, science and technology issues

ITo enhance collaboration and networking among experts in the field on engineering, science and technology

Sriwijaya International Symposium on Civil and Architecture Engineering

Host : Civil & Architecture Engineering Department

Sriwijaya International Symposium on Chemical Process, Biotechnology & Energy Engineering

Host : Chemical Engineering Department

Sriwijaya International Symposium on Mechanical and Materials Science & Engineering

Host : Mechanical Engineering Department

Sriwijaya International Symposium on Mining, Geology and Environmental Engineering

Host : Mining and Geology Engineering Department

E

Sriwijaya International Symposium on Electrical and Computer Engineering

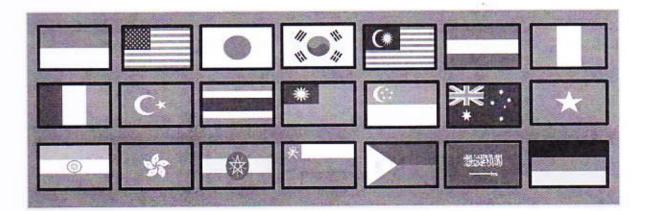
Host : Electrical Engineering Department

SICEST

PROFEEDINGS SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY - 2016

SICEST Author's Affiliations

UNIVERSITY


1
University of Tennessee – USA
Ecole Centrale de Nantes - France
University of Twente - Netherlands
Firat University - Turkey
Obafemi Awolowo University - Nigeria
Federal University of Technology - Nigeria
King Saud University - Saudi Arabi
Sultan Qaboos University - Oman
KE College – India
Bharata Martha College – India
Curtin University - Australia
Universiti Teknologi Malaysia – Malaysia
Tokyo University of Science - Japan
Yokohama National University - Japan
De La Salle University - Philippines
Can Tho University - Vietnam
Academia Sinica – Taiwan
Chonbuk National University - Korea
The University of Queensland - Australia

Tokyo University of Agriculture and Technology - Japan

The University of Hong Kong - Hong Kong Sejong University - Korea National Taiwan University of Science & Technology - Taiwan King Mongkut's University Technology Thonburi - Thailand Thai Nguyen University of Agriculture and Forestry - Vietnam Nanyang Technological University - Singapore National University of Singapore - Singapore Korea Institute of Industrial Technology - Korea Universiti Tun Hussein Onn - Malaysia Universiti Kebangsaan Malaysia - Malaysia Universiti Malaysia Pahang - Malaysia Universiti Sultan Zainal Abidin - Malaysia

OTHERS

German – Malaysian Institute - Malaysia PUB (Singapore National Water Agency) - Singapore Surbana Jurong Consultants Pte. Ltd – Singapore

ü

Ecophile - Korea

1-1

ON 016 SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY - 2016

二面后二(回道)

65

Bangka

continued..... authors affiliations

COMPANY AND OTHERS

PT. Krakatau Steel PT Wijaya Karya Beton, Tbk Nanocenter Indonesia PT Adaro Indonesia GeoPangea Research Group PT Teno Indonesia PT Ecophile Green Indonesia PT. Pamapersada Nusantara Pertamina Upstream Technology Center PT. Batamindo Investment Cakrawala PT. Nowmont Nusa Tenggara Sekampung River Organization (Mesuji) Watershed Management Technology Centre

(7)

UNIVERSITY / COLLEGE	Mercu Buana University	University of Indo Global Mandiri (UIGM)
Sriwijaya University	Pasundan University	Jenderal Achmad Yani University
Institute of Technology Bandung	Syrah Kuala University	The Islamic state University of Piau
University of Indonesia	State University of Padang	PGRI University of Palembang
Gadjah Mada University	Pancasila University	The Islamic state University of Sunan Gunung Djati
Padjajaran University	Sarya University	Polytohnic of Manufaktur Astra
Diponegoro University	State University of Malang	Mechanical Engineering College of Engineering Technology PLN
Brawijaya University	State Polytechnic of Srivijaya	Informatics Management and Computer College of Atma Luhur
University of Bengkulu	Tarumanagara University	Institute Technology of Kalimantan
Sebelas Maret University	Khainin University	University of Bangka Beiltung
Mataram University	Gorontalo National University	Parahyangan Camplin University
Trisakti University	Ahmad Oshian University	Sutan Ageng Tirtayasa University
University of North Sumatera	Tridinanti University	Institute Technology of Adhi Tama Surabaya
University of Lampung	University of Surabaya	Industrial Technology College (STTIND)
Andalas University	Ministry of Public Works	Polytechnic Academy of Technical Engineering Industry (ATMI)
University of Jambi	Telkom University	Veteran National Development University of Yogyakarta
Esa Unggul University	Islamic University of Indonesia	Tadutako Universita Patu
Bina Nusantara University	Gunadarma University	Informatios Management and Computer College of MDP
Indonesia Computer University	Palcontech	Educational Sciences Callege of Kie Paha Ternale
State University of Semarang	Bina Damia University	NATIONAL AGENCY
President University	Bidi Lahar University	National Nuclear Energy Adency of Indonesia
Maranatha Christian University	Musi Pawas University	The Agency for The Assessment and Application of Technology
MH Thamrin University	Sepuluh Nopember Institute of Technicopy	Indonesian Institute of Sciences (LIPI)
Polytechnic of Gsjah Tunggal	Widya Mandala Surabaya Catholic University	Department of Education (Ngaw)
Petra Christian University	Muhahmadiyah University of Palembang	Information Legumes and Tuber Origis Pessearch institutes (LETP)
State Polytechnic of Bali	Islamic Syarif Hidayatullah State Islamic University	Agency for Marine and Fisheries Research and Development
Dian Nuswantoro University	Atma Jaya Universitasity of Yogyakarta	Ministry of Public Works and Housing
Tanjungpura University	Lamburg Mangkurat University	Indenesia Tol Road Authority

Ž

SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY - 2016

WELCOME NOTE

FROM THE RECTOR OF SRIWIJAYA UNIVERSITY

On behalf of Sriwijaya University, I am very much privileged to congratulate all participants of The First Sriwijaya International Conference on Engineering, Science and Technology 2016 (SICEST 2016). This conference is part of the activities to mark the 56th year anniversary of Sriwijaya University.

Today our world is facing the engineering, science and technology problems. Research and Science development in Engineering. and Technology are one of a few sectors that can move forward and expected to be a share for regional and global economic recovery. I hope this international conference on engineering, science and technology can partially respond to the above issues.

World class universities and academic institutions are acknowledged by the high quality of researches produced and large number of high impact research publications. Therefore, high quality of researches and publications become the primary mission for an academic institution to achieve. Sriwijaya University as one of Indonesia's leading universities has determined to support the enhancement of researches and publications by providing platforms such as international conferences.

Finaly, I am very grateful fo the dedicated efforts of all the committee members who have involved in preparation, organization and administration of this event. I hope this conference will provide opportunities to all of participants to exchange ideas and result of their work and also to discuss future cooperation plans in engineering, science and technology development.

Thank you very much for your kind participation and I wish you all the best of luck.

Rector of Sriwijaya University Prof. Dr. Ir. Anis Saggaff, MSCE

iv

1-1

ON 116 PROCEEDINGS SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY - 2016

WELCOME NOTE

FROM DEAN OF FACULTY OF ENGINEERING SRIWIJAYA UNIVERSITY

Welcome to the 1st Sriwijaya International Conference Engineering, Science. on and Technology (SICEST) 2016. This conference is a regular program organized by Faculty of Engineering Sriwijaya University. In accordance with the rising demand for global harmonization of education, there will be increasing needs for international stages as the media for international community to meet, exchange ideas, cultures, and create collaborations. SICEST is created as a partial effort to accelerate international collaboration and dissemination of researches in the field of Science, Engineering, and Technology.

In order to make SICEST2016 gives more benefit for scientific communities, this conference is not only served as a media for research dissemination via presentation. SICEST2016 develops publication cooperation with four SCOPUS indexed publications to ensure the papers from this conference are well recorded in international database and recognized worldwide.

It is our great wishes and expectation that all distinguished guests and participants will get the benefits from this conference in order to make this event accomplishes its missions.

May all participants will have memorable experiences in Bangka Island Indonesia and enjoy the conference.

Best Regards

Dean Prof. Subriyer Nasir, MS., PhD

ISBN 979-587-621-1

51201

7100

Bang

PROCEEDINGS SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY - 2016

TABLE OF CONTENTS

SICEST2016 Overview	i,
Authors Affiliation	ii
Welcome notes	lv
Table of Contents	vi
Board of Editors	xili
Steering and Scientific Committee	xiv
Remarks from Organizing Committee Chairman	xvi
Organizing Committee	xiv
Acknowledgement	xvii
Program at a Glance	xviii
Plenary Session	xix

CIVIL ENGINEERING

Risk Allocation in Performance Based Contract Clauses for National Road Maintenance	
Project in Indonesia	
Deni Setiawan, Reini D. Wirahadikusumah, and Krishna S. Pribadi	1
Dominant Factor Causes of Construction Waste in the Indonesian Construction Project	
Elizar, Suripin and M.Agung Wibowo	5
The Effect of The Plate Numbers Toward The Compression Bearing Capacity Of Helical	
Piles in Peat Soil	
Ferry Fatnanta, Muhardi, and Parlan	9
The Investigation of El Nino Impacts on Rainfall in Lampung Province – Indonesia	
Gatot Susilo, Eka Desmawati and Ankavisi Nalaralagi	14
Sustainable Development: Early Age Strength of HSC Using Fly Ash to Replace Part of	
Cement	
Gidion Turuallo and Harun Mallisa	18
Quantification of Emission Rates of NO _x based on Engine on Equipment and Engine Tier	
Types for Diesel Construction Equipment	
Heni Fitriani and Phil Lewis	22
Quality of Experience on Toll Roads: Road Condition and Travel Time	
Herry Trisaputra Zuna and Naya Cinantya Drestalita	25
Simplified Hydraulic Conceptual Model for Stormwater Treatment Bioretention Basin	
(sri Ronald Mangangka)	29
Improving Mortar Properties in Saline Environment	
Jauhar Fairin, Pathurahman and Lalu Gita Pratama	35

SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY - 2016

SICEST2016 Bangka Island Indonesia, 8 10 November 2016

Effect of Plastic Aggregate coated with Sand to the Compressive Strength of Concrete	
Madsuri Satim., Pamudji,G. and Purnomo H.	39
Analysis of Transport Sedimentation in Setling Basin Weirin Watervang Lubuk Linggau	
OkmaYendri, DjugondoSiswodjo	43
Perceptions of Civil Engineers on Adequacy of Infrastructure at Sumatera	40
Peter F. Kaming and Ferianto Raharjo	60
Study of Longitudinal Slipway in Fisheries Port	50
Slamet Hargono	
TAKAT BELEVIS A COM BELEVIS	56
Shear Strength Study Effect of Gradation and Clay Content on Clayey Sand	
Soewignjo Agus Nugroho, Gunawan Wibisono, and Umam K.	59
The Analysis for Trip Generation of High Schools on Cihampelas Street Bandung	
Tania Bonita Sabrina and Tan Lie Ing	63
A Clustering Study - Steps to Protect Groundwater Resources	
Tatas,Yuyun Tajunnisa and Muhammad Hafiizh Imaaduddiin	64
ARCHITECTURE AND BUILT ENVIRONMENT	
'Nongkrong' Phenomenon Among University Students in Malang: Implications on The	
Characteristics of City Planning	
Astri Anindya Sari and Shirleyana	67
Bamboo Folded Frame as an Architectural Structure	
Bernadette Sudira and Anastasia Maurina	72
The Madurese Cultural Values in Kotalama Settlements – Malang Damayanti Asikin, Antariksa and Lisa Dwi Wulandari	
Dwelling Process on Rusunami Judging from Changes in Unit Rusunami Benhil II (Open-	76
Building Type)	
Joni Hardi and Andjar Widayanti	79
Redefine Architecture as Social Innovation for Empowering Community	15
Martin L. Katoppo, Sugeng Triyadi and M. Jehansyah Siregar	84
Marketing Place : The Strategy of Heritage Tourism Development of Kuto Besak Fort	07-03
Palembang	
Meldo Andi Jaya	88
Religiosity of Chinese Moslem: Implementation Respect to Ancestors in Dwelling	
Samsu Hendra Siwi and Paramita Atmodiwirjo	92
Strategy to Adjust Musi Riverfront Development at Palembang	
Setyo Nugroho and Husnul Hidayat	96
Canopy Density of Trees as Raindrops Arranger	1.2
Sri Budiastuti, Djoko Purnomo, and Irfan Budi Pramono	101
The Space of Nobility Building: The Construction of Spatial Concept Based Upon The Baliafs and The Life Orientation in The Site of Majapahit Angiont City, Trouvular Independent	
Beliefs and The Life Orientation in The Site of Majapahit Ancient City, Trowulan Indonesia Wara Indira Rukmi, Achmad Djunaedi, Sudaryono Sastrosasmita, and Heddy Shri	
Ahimsa-Putra	105
Application of Embodied Energy Calculation for Low Cost Housing In Indonesia	
Yuni Sri Wahyuni, Dewi Larasati ZR and Siswanti Zuraida	109

DN 116

PROCEEDINGS SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY - 2016

CHEMICAL PROCESS AND BIOTECHNOLOGY

High Equivalent of Theoritical Plate from Reactive Distillation Unit by Purification of Ethanol on	
Different Concentration	
Agus Aktawan and Zahrul Mufrodi	114
Advanced Nanomaterials for Water and Wastewater Treatment: From Strategic Fundamental	
Research to Industry Adoption	
Ahmad Fauzi Ismail	117
Adsorption Kinetics and Equilibrium Studies of Chromium (IV) Metal Ions on The Salacca Peel	
Based Activated Carbons	
Arenst Andreas Arie, Selvy Utama, and Hans Kristianto	118
Differences in Characteristic of Fermented Inulin Biomass, Concentrate and Particles Powder	
by Lactobacillus acidophillus With and Without Microfiltration As Source of Dietary Fiber for Anti	
Cholesterol	
Aspiyanto, Agustine Susilowati and Hakiki Melanie	119
Microwave-Assisted Extraction of Phenolics from Pineapple (Ananas comosus) Peels for Green	
Zero-Valent Iron Production	
Capili, Marc Joseph, Lombos, Owen, Oblepias, Carmelle, Uy, Marylou and Cynthia F.	
Madrazo	124
Brine Shrimp Lethality Test Of The Water Extract Of Averrhoa Carambola L. Leaves	
Dewi Tristantini and Aulia Rahmi	128
Bentonite-biochar Composite for Heavy Metals Removal	
Felycia Edi Soetaredjo, Yi-Hsu Ju, Aning Ayucitra, and Suryadi Ismadji	131
CeO2-Al2O3 xerogel as an oxygen storage support in Ni catalysts with enhanced reducibility	
Krongthong Kamonsuangkasem, Supaporn Therdthianwong, and Yingyot Poo-Arporn	132
Effects of Ruthenium Loading on Carbon Monoxide Hydrogenation	
Mardwita, Selpiana, Elfidiah, Ani Melani, Netty Herawati	136
Kinetics and Mechanisms of Methane Oxidation on Supported Binary Platinum-Chromium	
Catalyst	
Mardwita, Hideki Matsune, Sakae Takenaka and Masahiro Kishida	140
Synthesis of Epoxy Compound from Corn Oil as Intermediate for Biolubricant	
M. Riska J.P., M. Said , Anindya Fatmadini and M. Faizal	144
Influence of Hydrolysis Temperature and NAOH's Concentration to Make Oxalic Acid from	
Water Hyacinth	
Pamilia Coniwanti, Rizka Rachmiyanti, and Putri Yuliani	147
The Clathrate Hydrate Process for Desalination	
Ponnivalavan Babu and Praveen Linga	152
Study of Composition In The Process of Making Briquette Charcoal Rice Husk	
Rahmi M Sari, Erwin and Anizar	153
Laboratory Study of Optimization Surfactant Sodium Lignosulfonate From Bagasse	
Rini Setiati, Sugiatmo Kasmungin, Septoratno Siregar, Taufan Marhaendrajana, and	
Deana Wahyuningrum	157
Integrated Adsorber Engineering on Waste Cooking Oil Purification	
Seloiana, Shafira Nabilla, Eka Pertiwi, Mardwita, and Muhtaza Azizia Svafio	161

1-1

SICEST

PROCEEDINGS SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY - 2016

SICES T2016 Bangka taland Indonesia, B-10 November 2016

Laboratory Studies for the Improvement of Obtaining Oil using AOS Surfactant Injection with	
Variation Oil Composition at Low Concentration Sugiatmo Kasmungin, Kartika Fajarwati Hartono and Pauhesti Rusdi	166
Anaerobic Digestion of Cheese Whey for Biogas Production: Review	
Wara Dyah Pita Rengga, Riska Yuliana Siregar and Diyah Saras Wati	170
Isolation and UV-LC/MS/MS Characterization of Antioxidant Compounds from Azadirachta Indica Leaves	
Yuni Paramitha Sari, Ibrahim Nasser Ahmed, Nonot Soewarno, Suryadi Ismadji and Yi- Hsu Ju	175
ENERGY SCIENCE AND TECHNOLOGY	
Biogas Purification under Different Sheet Nylon Mesh and Flow Rate	
Abdullah Saleh, Elisa Yulistia, and Fitri Rowiyah Rambe	100
Effect of Temperature on the Production of Methane from Methane Hydrates Formed in Excess	180
Water Environment	
Chong Zheng Rong and Praveen Linga	184
Investigation on Visualization of Loop Heat Pipe	104
Nandy Putra, Cahya Tri Anggara, and Nasruddin A. Abdullah	185
Oil Price Affection on Human Resources and Alternative Fuels as the Renewable Energy in	100
Indonesia	
Prayang Sunny Yulia, Sugiatmo Kasmungin and Bayu Satiyawira	186
Bulk Production of Briquettes as an Alternative Fuel by Utilizing Coconut Shell	100
and Peanut Shell	
Yusraida Khairani Dalimunthe, Sugiatmo Kasmungin and Cahaya Rosyidan	189
MECHANICAL AND MATERIALS ENGINEERING	
Quality Control of Operators'Fatigue Vision in Beverage Industry	
Anizar Arsyad and Erwin Sitorus	194
Development of an Automatic Sorting System	
Hassan Basri, M A Hannan and Irsyadi Yani	198
Application Study of Taguchi Methods in Optimization of Process Paremeters for Rubber	
Industry	
Khalida Syahputri, Indah Rizkya Tarigan and Sa Dudin	202
Criteria for Supplier Selection of Raw Material in The Supply Chain of Palm Oil	
Meilita Tryana Sembiring, Dini Wahyuni, Indah Rizkya Tarigan, and Yusuf Hanifiah	205
Experimental Study on Performance of Battery Thermal Management System Using L-Shaped	
Flat Heat Pipes	
Nandy Putra, Bambang Ariantara and Herka Manda Putra	209

PROCEEDINGS SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY - 2016

Toughness Differences And Type of Fracture of Duralium in Artificial Aging Process Against Cooling Media Variation 2720 IB 2 7

Poppy Puspitasari, Dewi Puspitasari, Solichin Solichin, Andoko Andoko, Puput Risdanareni	210
Analysis of Effect of Capture Fisheries Policy to the Supply Chain of Fish Canning Industry	
using System Dynamic Modeling	
Ratna Purwaningsih and Buna Rizal Rachman	213
Redesigning a High Wheel Bicycle: A Case Study of Inventive Problem Solving	
Risdiyono	218
Numerical Analysis of Shell and Tube Heat Exchangers with Segmental and Helical Baffle	
Sri Poernomo Sari, Andi Cahya Ichi, and Astuti	223
Mapping for Suppliers of Fast Moving Product to Support Logisticactivities (Case Study In	
Hospital)	
Tuti Sarma Sinaga and Khawarita Siregar	227

MINING AND GEOLOGICAL ENGINEERING

Evaluation of Reservoir Performance on Field "X" by Craig Geffen Morse Method	
Ardiansyah Akbar, Sugiatmo Kasmungin and Pauhesti Rusdi	230
Volcanogenic Tonsteins from Bukit Asam Coalfield, South Sumatra Basin, Indonesia	
Ferian Anggara, Amanda A. Sahri, Zain A. N. Asa, and D. Hendra Amijaya	233
Identification of The Tegalombo Ancient Volcano Based on Geomorphology, Structural Geology	
And Volcanostratigraphy: An Application Towards The Primary Minerals Exploration in Pacitan	
East Java	
Fredy, Joko Soesilo, Ade Febrina, Aulia Kurnia Hadi, and Satrio Esti Hapsoro	236
Lithology Analysis Using Joint PPand PS (Converted Wave) Inversion	
Hafidz Dezulfakar, Gigih Prakoso W, Nova Linzai, Firman syaifuddin, and Widya Utama	239
Analysis on Reverse Fault Structure of Kendeng Zone in Nampu Area, Boyolali Regency,	
Central Java	
Hafidz Reyzananda, Jatmika Setiawan, and Mahap Maha	244
Mineral Analysis on Sediment Load Testof The Tanjung Bunga Coastal Area Makassar	
Municipality	
Hamid Umar, D. A. Suriamihardja, Lawalenna Samang, and Ulva Ria Irfan	253
Mineralogy of Silicified Coal in Muara Enim Formation, Tanjung Enim, South Sumatera	
Hendra Amijaya, Theodora N. Tambaria1, and Himawan Tri Bayu Murti	257
Integrated Coal Logistic Infrastructure Feasibility Study to Unlock Giant Coal Reserve in	
Central Kalimantan	
Henrikus Galih Irawan, Herlambang Cipta Aji, and Ade Candra	261
Redesign Mining Sequence on Basin Type Coal Deposit to Optimize Stripping of Overburden	
Cost	
M. Taufik Toba	265

M. Taufik Toha

X

277

281

PROCEEDINGS SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY - 2016

SICEST

Petrophysical Analysis and Reserve Estimation "Kaprasida" Field Baturaja Formation South Sumatera Basin

Muhammad Iqbal Maulana, Yosar Fatahillah, Widya Utama, and Anik Hilyah	269
Study of Temperature and Concentration Effect to Critical Micelles Concentration (CMC) on	
Surfactant Injection	
Puri Wijayanti, Sugiatmo Kasmungin and Widia Yanti	273
Study Characteristic Rock Mechanic at Roof and Rib In BMK 32 Hole Underground Coal Mine	
Bara Mitra Kencana Company, Sawahlunto	

Refky Adi Nata, Syamsul Komar, Endang Wiwik DH, and Murad MS Performance Comparison Between Polyamine and KCI in Swelling Clay and Rheology Parameters

Vaya Candida Putra, Sugiatmo Kasmungin, and Astra Agus Pramana DN

ENVIRONMENTAL SCIENCE AND TECHNOLOGY

Modification of Southern Bandung Waste Transportation Using Vehicle Routing Problem (VRP)	
- Nearest Neighbor Model	
Anni Rochaeni and Wahyukaton	283
Model Policy of Renewable Energy Resources of Waste Oil Palm Biomass In Sumatera Utara	
Aulia Ishak and Khalida Syahputri	288
Measuring Soil Recovery after Coal Minesite Rehabilitation in South Sumatra	
Dwi Setyawan, Adipati Napoleon, and Herlina Hanum	293
Superstructure Optimization Model for Integrated Urban Water Supply System - Bandung City,	
Indonesia	
E. Afiatun, S. Notodarmojo, A.J. Effendi, and K.A. Sidarto	296
Hospital Wastewater: Prediction of Contaminant Characteristics and The Possibility of Hybrid	
Membrane Process	
Ian Kurniawan, Subriyer Nasir, Hermansyah, and Mardiyanto	301
The Development of Android App System for Monitoring of Reclaimed Mine Land Based on	
GPS Location of the Tree Revegetation	
Rossi Passarella, Huda Ubaya1, Sutarno, Ahmad Rifai and Osvari Arsalan	307
Low Temperature Thermal Remediation for Refinery Sludge Contaminated Soil	
SongYoung Ho, Ko Sung Hwan, Ju Hong Bae, and Baek Ki Tae	310
Degradation of Winery Wastewater using UV light, O3, and UV/O3	
Tuty Emilia Agustina, Ha Ming Ang, and Vishnu Pareek	314
Study of Characteristics Habitat of Swamp Buffalo (Bubalus Bubalis) from Pampangan South	
Sumatra	
Yuanita Windusari, Laila Hanum, and Rahmat Pratama	321

xi

Bar

DN

10

ELECTRICAL AND COMPUTATION ENGINEERING

The Implementation of Diversion Traffic Using Open Flow	
Eki Ahmad Zaki Hamidi, Nanang Ismail and Mufid Ridlo Effendi	325
CBR Measurement Model Implementation for Determining the Course	
Harrizki Arie Pradana, and Agus Dendi Rachmatsyah	329
An Empirical Investigation on Customer Behavior to Adopt Mobile Commerce among the Y	
Generation in Indonesia	
Johan Reimon Batmetan, Jaime Da Costa Lobo Suares, and Suyoto	333
Design and Application Automatic Valve and Water Tank Replenishment Using Ultrasonic and	
Infrared Sensors	
Lia Kamelia, Neni Utami A, Adam Faroqi and Arry Citta Tunggara	339
Traffic Engineering Simulation using RSVP-TE Protocol on 3rd Layer Multiplatform MPLS	
VPN	
Nanang Ismail, M Arghifary, Eki A. Zaki1, and Dimas W	342
Implementation of Fuzzy Logic Control Algorithm in Mobile Robot Avoider by Using	
Omnidirectional Vision	
Rossi Passarella, Kemahyanto Exaudi, Sutarno and Mas Sunardi	347
A Modified Fuzzy Similarity Measure Decision Making Approach to SLCM Selection	353

SICEST ON

SRIWIJAYA INTERNATIONAL CONFEREN ENGINEERING, SCIENCE & TECHNOLOGY

BOARD OF EDITORS

PROCEEDINGS OF SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING SCIENCE & TECHNOLOGY (SICEST 2016)

ISBN 979-578-621-1

View Online at: http://ejournal.unsri.ac.id/index.php/SICEST2016

Editor-in-Chief

Tuty Emilia Agustina, PhD

Editorial Board Member

- Prof. Wen Chien Lee National Chung Cheng University, Taiwan
- Prof. Shafian Sharif Universiti Teknologi Malaysia, Malaysia
- Dr. Cynthia Fabian Madrazo De La Salle University, Phillipine
- Elda Melwita, PhD Sriwijaya University, Indonesia
- Rudi Heriansyah, PhD Umm Al-Quro University, Kingdom of Saudi Arabia
- Makbul Anwari, PhD King Abdul Aziz University, Kingdom of Saudi Arabia
- Setyawati Yani, PhD UMI, Indonesia
- Widya Fransiska Anwar, PhD Sriwjaya University, Indonesia
- Dr. Saloma
- Sriwijaya University, Indonesia
- Dr. Esa Prakasa LIPI Indonesia
- Abu Bakar Siddik, PhD Sriwijaya University, Indonesia
- Dr. Carolus Prasetyadi UPN Yogyakarta, Indonesia

ISBN 979-587-621-1

SICEST

SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY - 2016

STEERING COMMITTEE

Prof. David Charmichael (NSW University- Australia) Prof. Anis Saggaff (Sriwijaya University-Indonesia) Prof. Sunkuk Kim (Kyung Hee University-KOREA) Prof. Agus Sasmito (McGill University-Canada) Prof. Wen Chien Lee (AFOB-Taiwan) Prof, Kikuchi Masanori (NIMS - Japan) Prof. Takahashi Akiyuki (Tokyo University of Science-Japan) Prof. Andreas Wibowo (Ministry of Public Work-Indonesia) Prof. Wimpy (Parahyangan University-Indonesia) Prof. Johannes Widodo (NUS-Singapore) Dr. Soni Solistia Wirawan (BPPT-Indonesia) Dr. Tatang Hernas Soerawidjaja (ITB-Bandung) Prof. Zainuddin Nawawi (Sriwijaya University-Indonesia) Prof. Safian Sharif (UTM-Malaysia) Prof. Subriver Nasir (Sriwijaya University-Indonesia) Sukmandaru Prihatmoko M.Sc (IAGI-Indonesia)

SCIENTIFIC COMMITTEE

- Dr. Phil Lewis (Oklahoma State University-USA)
- Moh Seddik Meddah, PhD (Sultan Qaboos Univ-Oman)
- Prof. Yazid Bindar (ITB-Indonesia)
- Prof. Osman Adiguzel (Firat University-Turkey)
- Prof. Praveen Linga (NUS Singapore)
- Prof Ahmed Fazary (King Khalid Univ- Saudi Arabia)
- Dr. Nouruddeen Bashir Umar (ITB-Indonesia)
- Dr. Suryadi Ismadji (Widya Mandala Univ-Indonesia)
- Prof. Riman Sipahutar (Sriwijaya University-Indonesia)
- Prof. Zainal Salam (UTM Malaysia)
- Dr. Rudi Heriansyah (Umm Al-Qura University)
- Assoc. Prof. Jafri bin Din (UTM Malaysia)
- Dr. Erna Yuliwati (Sriwijaya University)
- Dr. Dina Muthmainah (Ministry of Marine Affairs & Fisheries
 Republic of Indonesia)
- Dhemi Harlan, Ph.D (ITB-Indonesia)
- Dr. IDedi Apriadi, MT. (ITB-Indonesia)
- Prof. Siti Nurmaini (Sriwijaya University-Indonesia)
- Dr. Ruddy Kurniawan (Andalas University-Indonesia)
- Dr. Rizgon Fajar (BPPT Indonesia)
- Setyawati Yani, Ph.D (UMI Makasar-Indonesia)
- Dr. Tri Kurnia Dewi (Sriwijaya University-Indonesia)
- Assoc. Prof. Nik Rumzi bin Nik Idris (UTM Malaysia)
- Dr. SD. Sumbogo Murti (BPPT Indonesia)

- Dr. Ildrem (Padjajaran University-Indonesia)
- Prof. Hasan Basri (Sriwijaya University Indonesia)
- Prof. Arief Junaidi (ITS-Indonesia)
- Prof. Muhammad Said (Sriwijaya University)
- Dr. Dasapta Erwin Irawan (ITB Indonesia)
- Amrifan Saladin Mohruni, Ph.D (Sriwijaya University)
- Salahuddin Husein, Ph.D (Gadjah Mada University)
- Dr. Ardiyanshah Syahrom (UTM Malaysia)
- Prof. Erika Buchari (Sriwijaya University-Indonesia)
- Dr. Nouruddeen Bashir Umar (UTM-Malaysia)
- Prof. Husni Husin (Syiah Kuala University)
- Dr. Agus Subekti (LIPI –Indonesia)
- Dr. Esa Prakasa (LIPI-Indonesia)
 - Dr. Noor Azlinda binti Ahmad (UTM Malaysia)
- Joko Nugroho, Ph.D. (ITB-Indonesia)
 - Dr. Ivan Affandi (SPS Technology-Indonesia)
- Prof. Andreas Wibowo (PU Dept. Indonesia)
 - Prof. Eddy Sutriyono (Sriwijaya University-Indonesia)
- Dr. Agung Murti Nugroho
- Prof. Solehudin Husein (UTM-Malaysia)
- Dr. Novia Sumardi (Sriwijaya University-Indonesia)
- Dr. Joni Arliansyah (Sriwijaya University)
- Dr. Wiryanto Dewobroto (Pelita Harapan Univ, Indonesia)
- Dr. Poedji Loekitowati (Sriwijaya University-Indonesia)

-

E ON 2016 SICEST

SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY - 2016

REMARKS FROM CHAIRMAN OF SICEST 2016

Honored Guest, Distinguished Scientists and Researchers Ladies and Gentlemen

On behalf of The Organizing Committee, I would like to extend a warm welcome to all distinguished participants who are attending the First Sriwijaya International Conference on Engineering, Science and Technology 2016 (SICEST 2016), with the theme : "Building a better future through innovation in engineering, science and technology" This conference is the first international conference organized by the Faculty of Engineering, Sriwijaya University.

SICEST2016 received 650 submissions, that were sent to review process by SICEST reviewers. After a thorough consideration based on the quality of paper submitted. SICEST Scientific Committee selected 220 papers for SCOPUS Publication by SICEST Publication Partners. There are four SICEST2016 publication partners i.e. Jurnal Teknologi, IJASEIT, MATEC, and IAES Journals. SICEST Scientific Committee also selected 180 papers for participation in SICEST2016 in Non Scopus Publication. There are 60 participants registered as listener.

The papers in this conference are contributed by scientists, researchers, engineers, students, professional stakeholders, plant builders, consultants, government officials, marketers and professional users/buyers of energy etc., coming from 20 countries and 137 affiliations.

We do hope that by organizing this conference will bring the most exciting development on Engineering, Science and Technology for our better future. This activity will provide a forum, where all concerned, may change ideas, information and knowledge to enhance the development of engineering, science and technology.

I hope that fruitful discussions during the conference will lead to the next steps in expanding engineering, science and technology cooperation, and once again my cordial welcome, my best wishes and a memorable stay in Bangka Island. Through this occasion, we would like to apologize for any unfavorable situations that may cause inconvenience during the SICEST 2016.

Chairman Dr. Muhammad Faizal

ISBN 979-587-621-1

PROCEEDINGS SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY - 2016

ORGANIZING COMMITTEE

 Executive Chairman
 Dr. Muhammad Faizal

 Technical Committee Chairman
 Amrifan Saladin Mohruni, Ph.D

 Program & Conference Manager
 Dr. Leily Nurul Komariah

Publication & Paper Management Tuty Emilia Agustina, Ph.D Elda Melwita, Ph.D

Finance

Ika Yuliantina, Marwani Zachrie, Lia Cundari, Heriyanto, Hermawan Yuliansyah, Deni Chaerudin

Program Staff:

Irwin Bizzy, Dr. Susila Arita, Baharuddin, Yoga Permana, Amir Arifin, PhD

Cooperation & Sponsorship: Dr. Restu Juniah, IFarida Ali, Dr. Hanafiah,

Secretariate

Bazlina Dawami, Cindi Ramayanti, Winny Andalia, Alexander Ivan, Sucia Aprisah, Yangia Septa, Mia Odina,

Symposium Chair

Dr. Saloma Hasyim Irsyadi Yani, Ph.D Heni Fitriani, Ph.D Dr. Diah Kusuma Pratiwi Widya Fransiska F, Ph.D Abu Bakar Siddik. Ph.D Dr. Budhi Kuswan Soesilo

Production Team:

Amrillah Nugrasyah, Bella Febrianti, Ihsan Riady, Edriansyah, Dr. Fitri Hadiah, Chandra Kartawijaya, Agusyanda, Maidawati

Secretariate Office:

Graha Bukit Asam Sriwijaya University 1st Floor JI. Srijaya Negara Bukit Besar Palembang

sicest@.unsri.ac.id

http://sicest.ft.unsri.ac.id

+62 81258102150

xvi

Proceedings

SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY

Simplified Hydraulic Conceptual Model for Stormwater Treatment Bioretention Basin

Isri Ronald Mangangka*

Department of Civil Engineering, Faculty of Engineering, Sam Ratulangi University, Manado 95115, Indonesia,

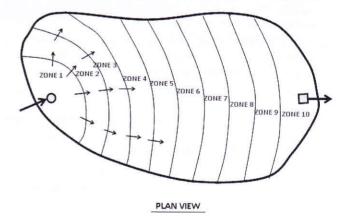
Abstract: A bioretention basin performs as a pollutant removal device using filtration as the main mechanism, supported by evapotranspiration, absorption and biotransformation. This is in addition to attenuation of runoff peak flow and reduction of runoff volume through detention and retention [1]. Past studies have reported that pollutant concentration reduction in bioretention basins is poor for a range of pollutant species particularly for nutrient species [1][2][3][4]. However, a substantial reduction in outflow volume can lead to significant reduction in pollutant loads [5].

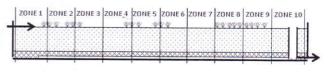
A range of studies have been conducted for assessing bioretention basin performance and hydraulic and pollutant removal processes [6][7][8][9][10][11][12]. However, most of the past field studies have been conducted to evaluate the long term treatment performance while most of the studies which focused on developing an in-depth understanding of processes have been conducted using laboratory-scale models [13][14][15]. This has resulted in knowledge gaps relating to field performance and associated pollutant removal processes in relation to bioretention basins.

As a part of this study, a selected operating bioretention basin was evaluated for its hydraulic processes. This paper focuses on the development of bioretention basin hydraulic conceptual model. The model utilises a range of conceptual approaches and empirical equations. The model replicates the infiltration processes through the filter media and water movement within the system from the inlet to the outlet. The model was successfully calibrated using on-site recorded inflow and outflow data.

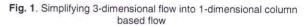
Keywords: Bioretention Basin, bioretention model, hydraulic conceptual model.¹

e-mail: isri.mamgangka@unsrat.ac.id*


SICEST


1. INTRODUCTION

Hydraulic processes play an important role in stormwater pollutants removal by bioretention basins. As pointed out by numerous researchers (for example [6] and [8]), hydraulic factors such as residence time and outflow discharge are the most critical. These factors can be obtained using design configurations in event-based assessment. However, in-depth assessments which require variation of these factors within an event require a modelling approach to generate the relevant hydraulic factors. Due to this reason, a conceptual model was developed to estimate hydraulic factors in short time steps. The developed model contains a range of conceptual approaches and empirical equations. The model was developed to replicate stormwater infiltration through the filter media, and water movement from the drainage layer exiting the bioretention basin through the perforated pipes.


2. THE PRINCIPLES AND ASSUMPTIONS ADOPTED FOR THE MODEL

Hydraulic characteristics of a bioretention basin are primarily based on infiltration and percolation of stormwater through the filter media and can be classified as typical subsurface flow. Subsurface flow can be best replicated by 3-dimensional flow models, which are very complex and often requires numerical analysis [16]. To reduce this complexity, a range of assumptions was made, primarily to convert a 3-dimensional flow system to a 1-dimensional flow system. In the conceptual model, the bioretention basin was divided into a number of equal zones. A trial and error process used suggested that 10 equal zones were suitable for the model (see Figure 1). The stormwater movement over the surface was as a flow from zone 1 where the inlet structure was located to zone 10 where the outlet structure was located. Each zone with 24.8 m2 surface area was considered to be a soil column in which the water flows downward to replicate the infiltration process. When the stormwater flows on the surface of the assumed soil column exceeds the infiltration capacity of the soil, the excess runoff was assumed to be surface flow to the next zone.

CROSS SECTION

The stormwater flow within the bioretention basin (see Figure 2) was modelled according to the processes described in the following steps:

- Stormwater runoff enters the bioretention basin through the inlet structure in zone 1 which is assumed as a soil column (1).
- The stormwater runoff then infiltrates into the soil column (2). This is replicated using the infiltration model.

ACESTA

10

Proceedings

SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY

 When the inflow rate is higher than the soil column infiltration capacity, the excess runoff becomes surface flow to the next soil column (3).

SICEST

- The infiltrated water then percolates until it reaches the drainage layer in which the stormwater is temporarily stored (4).
- Part of stormwater stored in the drainage layer percolates to the original soil layer underneath (5).
- Through perforated pipes, stormwater in the drainage layer flows to the outlet structure where the outflow was monitored (6).

3. MODELLING THE INFILTRATION PROCESS IN THE SOIL COLUMN FILTER MEDIA

The soil column is considered as a system where water balance can be applied. This means water entering and leaving the system is subject to the water balance concept. In this way, cross interaction between columns and its surrounding columns were considered negligible. Therefore, any possible seepage flow from groundwater and infiltration into the sidewall is negligible. This is acceptable since the soil surrounding the system is silty clay with low infiltration rate. Adopting the water balance approach, the soil column was considered as a storage. The storage volume was replicated to increase or decrease depending on the volume of stormwater entering and leaving the storage. This action was replicated using a standard storage equation in the form of (1).

 $\Delta S = S_{t+\Delta t} - S_t = I \cdot \Delta t - O \cdot \Delta t \quad (1)$

Where ΔS = change in storage volume (m³)

 Δt = time interval (sec)

St = storage volume (m3) at the beginning of the time interval Δt

 $St+\Delta t$ = storage volume (m³) at the end of the time interval Δt

I = inflow discharge rate (m³/sec)

O = outflow discharge rate (m³/sec)

The input to the system was infiltration while the output components of the system are percolation to the drainage layer underneath and evapotranspiration. Infiltration is considered to be influenced by factors such as soil moisture content, porosity, soil hydraulic conductivity and soil surface condition including vegetation cover. A range of equation formats are available to replicate the infiltration process such as equations proposed by [17][18][19]. All these equation formats were reviewed and Philip and Green-Ampt models were preferred for this study. This is due to the capability of Philip and Green-Ampt models to incorporate soil (media) characteristics in the equation rather than the pure mathematical format adopted in Horton's infiltration model. However, since the Green-Ampt model requires a lesser number of variables compared to the Philip model, the Green-Ampt model was chosen for the conceptual model developed.

The principle of Green-Ampt model is based on continuity and momentum [16]. The conceptual format in which the Green-Ampt equation was applied in this study is presented in Figure 3. Considering the zone 1 soil column as a vertical soil column (see Figure 3 (a)), the control volume was defined as the volume of the soil column from the surface to depth *L* (see Figure 3 (b)). As the wetting front progresses, the moisture content θ will increase from the initial value θ_i to η (porosity). When θ equals η , the soil is fully saturated. When L equals the thickness of the filter media (m), the whole filter media is considered fully saturated. In this condition, the wetting front fully passes the whole filter media and reaches the drainage layer. Accordingly, infiltration is replaced by percolation. The cumulative water depth infiltrating into the soil is expressed by (2) [16].

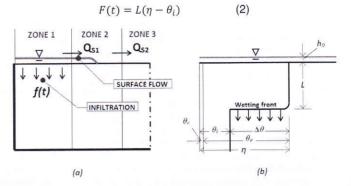


Fig. 3. Vertical soil column and Green-Ampt infiltration model variables (Figure 3 (b) adapted from [16]

The developed model divides the infiltration process into two phases. Phase 1 starts from the beginning of the infiltration process until it reaches the drainage layer. Phase 2 is the phase when the infiltrated stormwater contributes to the storage volume in the drainage layer. In this instance, the drainage layer was considered as the second storage. The stormwater entering and leaving this second storage was also replicated using the water balance approach with a standard storage equation in the form of (1). Detail modelling of phase 1 and phase 2 are explained further as follows:

Phase 1

When the stormwater inflow from the catchment enters zone 1 or the exceeded surface flow enters the next zone, the stormwater begins to infiltrate into the soil column of the zone at a certain infiltration rate. The actual infiltration rate is equal to the inflow rate, if the inflow rate is less than the infiltration rate capacity of the soil column. However, if the inflow rate is greater than the infiltration rate capacity, the actual infiltration rate is equal to the infiltration rate capacity. The infiltration rate capacity was calculated using (3) [16]).

$$f(t) = k_s \cdot \left(\frac{\psi \Delta \theta}{F(t)} + 1\right)$$

Where: f(t)

The infiltration rate capacity (m/h)

- F(t) = Cumulative infiltration (m)
- *k_s* = Hydraulic conductivity or saturated soil permeability coefficient (m/h)
- ψ = Wetting front soil suction head (m)
- $\Delta \theta = \text{The difference between the initial water content and saturated water content or porosity } (\eta)$

The equation for infiltration rate capacity (3) can be reformulated for cumulative infiltration capacity equation in the form of (4)[16]. Equation format shown in (4) requires iterative solutions to obtain cumulative infiltration capacity F(t).

Proceedings

SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY

$$F(t) = k_s \cdot t + \psi \Delta \theta \cdot \ln\left(1 + \frac{F(t)}{\psi \Delta \theta}\right)$$
(4)

Where: t = Time elapsed (h)

SICES

Phase 2

Phase 2 begins when the wetting front reaches the drainage layer and the stormwater in the filter media starts draining to the drainage layer. It is indicated by the cumulative infiltration capacity calculated using (4) equals the cumulative infiltration obtained using (2). This is known as percolation, which is the movement of water downward in a media which is promoted by gravitational forces. The percolation of stormwater from the filter media to the drainage layer was also divided into two conditions. The first condition is when the filter media is still unsaturated while the second condition rate in the second condition was replicated using saturated coefficient of permeability k_s . Therefore, the volume of water which percolates during the modelling time interval Δt can be written as (5).

$$Vw_{\Delta t} = k_s \cdot \Delta t \times A$$
 (5)

- Where: $Vw_{\Delta t}$ = Volume of water percolating from filter media column (m³)
 - Δt = Time interval (h)
 - A = Cross sectional area of the filter media column (m²)

When the filter media is not fully saturated, the saturated soil permeability coefficient, k_s in (5) is replaced by k_w , as presented in (6).

$$Vw_{\Delta t} = k_w \cdot \Delta t \times A \tag{6}$$

Where: k_w = Unsaturated soil permeability coefficient (m/h)

To obtain an accurate unsaturated soil permeability coefficient k_{w} , a field or laboratory experiment is required. However, [20] has proposed an approximate method to obtain values for k_w , which is presented in (7).

$$k_w = k_s \times S_e^{\delta} \qquad (7)$$

Where: S_e = Effective saturation of soil

 δ = An empirical constant, expressed by

 $\delta = (2 + 3\lambda) / \lambda$, where λ is the pore size distribution index

Reference [21] suggested pore size distribution index (λ) as equal to infinity for uniform sand, resulting 3.0 for empirical constant (δ). For natural sand deposits, reference [22] suggested $\lambda = 4.0$, resulting in a δ value of 3.5, while for soil and porous rock, reference [23] proposed 2.0 for λ , resulting in a δ value of 4.0. The developed bioretention basin used $\lambda = 10$ which gives δ = 3.5. This value was obtained from the calibration.

The effective saturation S_e is the ratio of the available moisture content $\theta - \theta_r$ to the maximum possible available moisture content $\eta - \theta_r$. It is written in the form of (8)[16].

$$S_e = \frac{\theta - \theta_r}{\eta - \theta_r} \tag{8}$$

Where:

- S_e = Effective saturation of soil
- θ = Moisture content
- θ_r = The residual moisture content of soil after it has thoroughly drained

 η = Porosity

The maximum possible available moisture content is called the effective porosity, reflected by $\eta - \theta_r = \theta_{e^*}$. The effective saturation, S_e was monitored during the modelling period to evaluate whether the filter media is in unsaturated or saturated condition. Once the value of S_e reaches 100%, the filter media is considered to be saturated.

4. WATER LOSSES DUE TO PERCOLATION

Since the type of soil underneath the bioretention basin is silty clay with a very low percolation rate, a constant percolation rate of 1.8×10^{-6} m/h as suggested by [24] was applied in the model throughout the bioretention basin area. However, during model calibration, this percolation rate was adjusted to obtain better results.

5. DIRECT PRECIPITATION

Direct precipitation is rainfall which directly falls on the bioretention basin surface and the area surrounding the bioretention basin without entering through the inlet measurement device. The amount of direct precipitation for a certain duration is considered as the rainfall depth for that duration multiplied by the bioretention basin surface area. In the case where the rainfall falls on the surroundings of the bioretention basin area and the runoff produced does not flow through the inlet measurement device, but seeps through the bioretention basin, runoff was estimated by applying a runoff coefficient. The initial runoff coefficient of 0.7 was considered appropriate to compensate for the loss of water due to interception and infiltration. However, this value was adjusted during model calibration.

6. MODELLING THE FLOW THROUG PERFORATED PIPES TO OUTLET

Flow through the perforated pipes was modelled as flow in a circular open channel. Initially, this flow was assumed as laminar and later confirmed after calibration. The flow at the end of the perforated pipe near the outlet was also assumed as uniform and steady. This assumption was based on the fact that the longitudinal slope of the perforated pipe is very small (0.005).

Flow through a circular open channel is explained by a range of researchers such as by [25][26][27][28] and [29]. Based on the suggestions provided in literature, Manning's equation, in the form of (9), was used to simulate flow through the perforated pipes in the model developed.

$$Q = \frac{k}{n} \times A \times R^{2/3} \times S^{1/2}$$
(9)

Where: $Q = \text{Discharge} (\text{m}^3/\text{sec})$

- $k = \text{Conversion factor (m}^{1/3}/\text{sec})$
- n = Manning's coefficient
- A = Wetted cross sectional area of the circular pipe (m^2)
- R = Hydraulic radius of the wetted cross sectional area (m)
- S = Slope of the hydraulic grade line (equal to the longitudinal slope for uniform flow)

The internal surface of the perforated pipe was considered as rough due to the presence of perforations. Therefore, the Manning's roughness coefficient in the range of 0.012 to 0.017 was initially used [29]. The actual Manning's coefficient was obtained from the calibration.

PROCEEDINGS

SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY

7. CALIBRATION OF THE MODEL

SICEST

Finalised model parameters were obtained by model calibration. Calibration was undertaken to obtain model parameters ensuring that the model was performing as close as possible to the stormwater bioretention basin system. It was primarily a trial and error changing of parameters until outputs reach best visual fit to the measured outcomes [30][31]. The method is widely used and commonly recommended for complex models [32][33][34].

In order to obtain a good comparison during the calibration process, a noise suppression technique was required to reduce the data noise due to the sensitivity of the pressure sensor reading the fluctuating water depth in the V-notch weir boxes. In this study, the average method was used for noise suppression, by averaging several data points before and after each data point as a corrected data point. The typical hydrographs before and after reducing noise using the averaging method are shown in Figure 4.

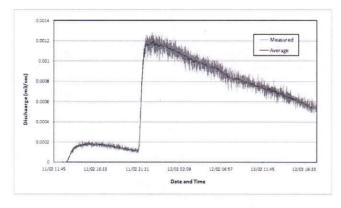


Fig. 4. Hydrograph before and after noise suppression

The model calibration was done using data from twelve storm events during April 2008 to March 2011 period [35], and the calibration results were found to be satisfactory [36]. To assess the accuracy of the calibrated model, the study adopted a well-known statistical analysis method developed based on the regression analysis technique [37][38]). In this method, coefficient of determination (R^2) which can be used to measure the 'goodness-of-fit' of the estimated model is calculated based on regression residual by taking time as the independent variable (*x*) and measured and model values as dependent variables. The residual (\hat{u}_i) associated with each paired data values (measured and model) is the vertical distance between the measured value (y_i) and model value (\hat{y}_i) which can be written as $\hat{u}_i = y_i - \hat{y}_i$ (see Figure 5) [38].

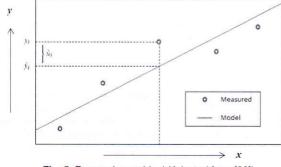
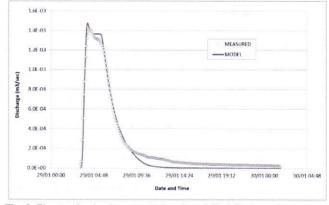
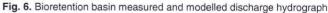


Fig. 5. Regression residual (Adapted from [38])

The R^2 value is calculated using (10) [37].

R	2 = 2	1 –	$\frac{SSR}{SST} = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$	(10)
Where:	R^2	=	Coefficient of determination	
	SSR = The sum of the squared residuals and can b		and can be	
	expressed as $SSR = \sum (y_i - \hat{y}_i)^2 = \sum \hat{u}_i^2$		$=\sum \hat{u}_i^2$	
S		r =	Total sum of squares and can be expressed	
			as $\sum (y_i - \overline{y})^2$.	
	y_i	=	Measured value of dependent var	iable


i = measured value of dependent variable


 \hat{y} = Model value of dependent variable

 \bar{y} = Mean value of dependent variable

The sum of squared residuals (*SSR*) represents the residuals/errors of the model to the measured data while the total sum of squares (*SST*) represents the variation of the dependent variable around its mean. Therefore, $\frac{SSR}{SST}$ can be defined as the proportion of the residual to the variation in the dependent variables. R^2 can be written as 1 minus the proportion of the residual to the variation and must be bounded by 0 and 1 ($0 \le R^2 \le 1$). The higher the R^2 value, the better the model or the closer the value of R^2 to 1, the closer the model to the data points [38].

An example of a typical analytical result showing the goodness-of-fit of the developed wetland conceptual model hydrograph for the measured data is presented in Figure 6.

The coefficient of determination (R^2) calculated for twelve monitored rainfall events are shown in Table 1.

Table 1. The goodness-of-fit, coefficient of determination R^2

No.	Rainfall event	R^2	
1	29-01-2008	0.89	
2	03-02-2008	0.91	
3	17-03-2008	0.92	
4	18-04-2008	0.91	
5	29-05-2008	0.92	
6	22-01-2009	0.94	
7	29-01-2010	0.98	
8	18-04-2010	0.91	
9	23-06-2010	0.92	
10	19-07-2010	0.88	
11	02-03-2011	0.93	
12	29-03-2011	0.94	
Average		0.92	

SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY

Note: Minimum $R^2 = 0.88$, maximum $R^2 = 0.98$ and average $R^2 = 0.92$ (printed in bold)

Table 1 shows that the R^2 ranges from 0.88 to 98 with an average of 0.92. This range was considered satisfactory. This suggests that the approaches adopted in the model development are appropriate.

Based on the trial and error procedure, the parameters were adjusted during the calibration and the best fit parameters were obtained for the developed model. The parameters obtained and their final values are given below:

- Hydraulic conductivity of the filter media : 0.025 m/hr
- Wetting front soil suction head, ψ : 0.167 m
- Porosity of the filter media, η : 0.501
- Pore size distribution index, λ :10
- Percolation rate of soil underneath the basin : 5 x 10⁻⁵ m/hr
- Manning's coefficient of the perforated pipe : 0.015
- Runoff coefficient : 0.7

7. CONCLUSION

SICEST

The treatment processes of stormwater in a bioretention basin are influenced by a range of hydraulic factors. However, these influential factors may vary during an event and the variation can be generated using a detailed modelling approach. Therefore, in this study a hydraulic conceptual model of bioretension basin which is capable to replicate the hydraulic conditions within the wetland was developed. The model was calibrated using trial and error procedure which is the most robust procedures available.

The model was simplified from 3-dimension flow system to a 1-dimensional flow system. However, the approaches adopted to develop the bioretention basin hydraulic conceptual model in this study are satisfactory. The average coefficient of determination of model-measured outflow discharge, R^2 of 0.92 confirms the suitability of the model developed to simulate hydraulic factors.

REFERENCES

- Davis, A. P., Shokouhian, M., Sharma, H. and Minami, C., 2006, 'Water Quality improvement through bioretention media: nitrogen and phosphorus removal', Water Environment Research, Vol. 78, pp. 2177-85.
- [2] Hatt, B. E., Deletic, A. and Fletcher, T. D., 2007, 'Stormwater reuse: designing biofiltration systems for reliable treatment', Water Science Technology, Vol. 55, No. 4, pp. 201-9.
- Henderson, C., Greenway, M. and Phillips, I., 2007, Removal of dissolved nitrogen, phosphorus and carbon from stormwater by biofiltration mesocosms', Water Science and Technology, Vol. 55, No. 4, pp. 183-91.
- Greenway, M. 2008. 'The role of media, microbes and macrophytes in improving the effectiveness of bioretention systems, have we got it right?'. In SIA Stormwater Conference. Gold Coast.
- Hunt, W. F., Jarrett, A. R., Smith, J. T. and Sharkey, L. J., 2006, 'Evaluating bioretention hydrology and nutrient removal at three field sites in North Carolina', Journal of Irrigation and Drainage Engineering, Vol. 132, No. 6, pp. 600–8.
- Davis, A. P., 2007, 'Field Performance of Bioretention: Water Quality', Environmental Engineering Science, Vol. 24, No. 8, pp. 1048-64.

- [7] Davis, A. P., 2008, 'Field performance of bioretention: Hydrology impacts', Journal of Hydrologic Engineering, Vol. 13, No. 2, pp. 90-5.
- [8] Dietz, M. E. and Clausen, J. C., 2005, 'A field evaluation of rain garden flow and pollutant treatment', Water, Air and Soil Pollution, Vol. 167, No. 1-4, pp. 123-38.
- [9] He, Z., Davis, A. P. and Asce, F., 2011, 'Process Modeling of Storm-Water Flow in a Bioretention Cell', Journal of Irrigation and Drainage Engineering, Vol. 137, No. 3, pp. 121-31.
- [10] Heasom, W., Traver, R. G. and Welker, A., 2006, 'Hydrologic modeling of a bioretention best management practice', Journal of the American Water Resources Association, Vol. 42, No. 5, pp. 1329-47.
- [11] Hsieh, C. H. and Davis, A. P., 2005, 'Evaluation and optimization of bioretention media for treatment of urban stormwater runoff', Journal of Environmental Engineering, Vol. 131, No. 11, pp. 1521-31.
- [12] Hsieh, C. H., Davis, A. P. and Needelman, B. A., 2007b, 'Nitrogen removal from urban stormwater runoff through layered bioretention columns', Water Environment Research, Vol. 79, No. 12, pp. 2404-11.
- [13] Hsieh, C.-h., Davis, A. P. and Needelman, B. A., 2007a, 'Bioretention column studies of phosphorus removal from urban stormwater runoff', Water environment research : a research publication of the Water Environment Federation, Vol. 79, No. 2, pp. 177-84.
- [14] Moore, J. R., 2008, 'Effect of compaction on removal efficiency of lead, copper, zinc, nitrate, and phosphate in a bioretention system a column study' Thesis.
- [15] Zhang, L., Seagren, E. A., Davis, A. P. and Karns, J. S., 2011, 'Long-term sustainability of Escherichia coli removal in conventional bioretention media', Journal of Environmental Engineering, Vol. 137, No. 8, pp. 669.
- [16] Chow, V. T., Maidment, D. R. and Mays, L. W., 1988, 'Applied hydrology'. Ed. Clark, B. J. and Morriss, J., New York: McGraw-Hill, Inc.
- [17] Horton, R. E., 1933, 'The role of infiltration in the hydrologic cycle', Trans. Am. Geophys. Union, Vol. 14, pp. 446-60.
- [18] Philip, J. R., 1957, 'The theory of infiltration: 1. The infiltration equaiton and its solution', Soil Sci., Vol. 83, No. 5, pp. 345-57.
- [19] Green, W. H. and Ampt, G. A., 1911, 'Studies on soil physics, part I, the flow of air and water through soils', Agric. Sci, Vol. 4, No. 1, pp. 1-24.
- [20] Brook, R. H. and Corey, A. T., 1964, 'Hydraulic properties of porous
- [21] Irmay, S., 1954, On the Hydraulic Conductivity of Unsaturated Soils, Trans. AGU, Vol. 35, No.3, pp. 463-467
- [22] Averjanov, S. F., 1950, 'About permeability of subsurface soils in case of complete saturation', English Collection, Vol. 7, pp. 19-21.
- [23] Corey, A. T., 1977, Mechanics of Heterogeneous Fluids in Porous Media, Water Resources Pubs., Fort Collins, Colorado
- [24] Lambe, T. W. and Whitman, R. V., 1969, 'Soil mechanics', New York: John Wiley and Sons, Inc.
- [25] Chow, V. T., 1959, 'Open Channel Hydraulics', New York: McGraw-Hill Book Company.

ISBN 979-587-621-1

Proceedings

SRIWIJAYA INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE & TECHNOLOGY

[26] Akan, A. O., 2006, 'Open Channel Hydraulics', First Edition, Oxford: Elsevier Butterworth-Heinemann.

SICEST

- [27] Chanson, H., 2004, 'The Hydraulics of Open Channel Flow: An Introduction', Second Edition, Oxford: Elsevier Butterworth-Heinemann.
- [28] Sturm, T. W., 2001, 'Open Channel Hydraulics', New York: McGraw-Hill.
- [29] Han, D., 2008, 'Concise Hydraulics': Ventus Publishing.
- [30] Gupta, H. V. and Sorooshian, S., 1998, 'Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information', Water Resources Research, Vol. 34, No. 4, pp. 751-63.
- [31] Li, X. and Yeh, A. G.-o., 2002, 'Neural-network-based cellular automata for simulating multiple land use change using GIS', International Journal of Geographical Information Science, Vol. 16, No. 4, pp. 323-43.
- [32] Abbott, M. B. and Refsgaard, J. C., 1996, 'Distributed Hydrological

- [33] Yu, Z. and Schwartz, F. W., 1998, 'Application of an integrated basin-scale hydrologic model to simulate surfacewater and ground-water interactions', Journal of the American Water Resources Association, Vol. 34, No. 2, pp. 409-25.
- [34] James, L. D., 1972, 'Hydrologic modeling, parameter estimation, and watershed characteristics', Journal of Hydrology, Vol. 17, No. 4, pp. 283-307.
- [35] Mangangka, Isri Ronald, 2013, Role of Hydraulic Factors in Constructed Wetland and Bioretention Basin Treatment Performance, Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia.
- [36] Mangangka Isri R., Liu An, Goonetilleke Ashantha, Egodawatta Prasanna (2016), Creating Conceptual Models of Treatment Systems, in Enhancing the Storm Water Treatment Performance of Constructed Wetlands and Bioretention Basins. pp. 15-38., Singapore: Springer Singapore.
- [37] Chatterjee, S. and Hadi, A. S. 2006. 'Regression Analysis by Example'. Hoboken: Wiley-Interscience.
- [38] Rawlings, J. O., Pantula, S. G., and Dickey, D. A., I., 1998, 'Applied regression analysis: a research tool', New York: Springer.

Dr. Nuhammad Faizal in the Sriwijaya International Conference on Engineering. Indonesia B-10 November 2016 Science & Technology held in Bangka Island, Executive Chairman Perdingenter for Participation Isri Ronald Mangangka We certify that Ms/Mr has participated as **Oral Presenter** Prof. Subriyer Nasir, Ph.D. Dean Faculty of Engineering Sriwijaya University