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This study presents a methodology to calibrate a traffic incident simulation model, particularly in a freeway. The
queue length was used as the objective of the simulation model calibration in this study. The simulation model was
set up using Traffic Simulation Model PTV. VISSIM. Multiple incident durations were simulated, and the generated
queue lengths were compared to the observed queue lengths. The observed queue lengths were estimated using the
LWR model and shockwave speeds calculated using the field data. The results confirm that calibrated VISSIM
incident model can signify the shockwave propagation speeds and queue length in the event of freeway incident.
Such a model can be implemented as an instrument for setting up traffic management strategies to alleviate the

mncident’s impact.
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1 Introduction

Incidents are random events that happen anytime and
anywhere on freeways with negative impacts on the
flow of traffic. Such events obstruct a shoulder, a lane
or multiple lanes and may involve vehicle accident,
disabled vehicle and spilled load resulting in decreased
throughput and increased delay. The Highway Capacity
Manual indicated that incidents are the main reason for
more than half of congestion and delays [1]. Looking at
the incident’s impact on freeway operations and taking
into account the delay they are in charge of, they
deserve in-depth study.

Understanding the impact of incidents is essential to
maximize freeway service and minimize their negative
effects. The traffic flow theory has been utilized to
develop Shock Wave (SW) profiles because of
incidents. These profiles are the key tools for attaining
the essential variables such as queue length, delay, and
the duration of queue dissemination. An example of this
is that if the time required for dissolving the queue could
be accurately estimated, reliable information regarding
traffic conditions could be disseminated to road users.
Thus, it leads to an effective traffic management
strategy that makes the transportation system efficient,
greener, and even safer.

A microscopic traffic simulation model has become
very popular in the discipline of traffic engineering,
transportation system design as well as traffic
operations and management. This model delivers an

accommodating environment for measuring different
traffic management strategies, e.g., minimizing
incident-induced delay and emissions as well as
designing optimal incident response management
schemes. A researcher has employed traffic simulation
models for improving mobility and making
transportation systems more efficient [2]-[4]. However,
the application of simulation to analyze incidents and
their impact has been somewhat limited.

The ability to correctly simulate incidents in
microscopic simulation models is the first step in
analyzing the impact of freeway incidents and taking
appropriate actions to address the problem. However, it
appears that there is an absence of a satisfactory
technique for appropriately simulating traffic incident
in the simulation model. To successfully mimic the
impact in microscopic traffic simulation models
requires the model’s parameters to be accurately
calibrated using valid objective measurement resulted
from the incident. This paper is focused on calibrating
microscopic traffic simulation models to model the
impacts of incidents.

It is desirable to calibrate microsimulatiflmodels such
that queue lengths caused by incidents reflect the real-
world conditions. However, it is problematic to measure
the queue lengths in the field directly, due to the
variation in travel demand, presence, and absence of on-
off ramps and weaving sections. Therefore, in this
research, the simulation model is calibrated so that the
resulting SW speeds from the model reflects the ones
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that observed in the field. To achieve this, the queue
lengths from the simulation model were compared to
those predicted from the LWR, where the LWR model
parameters are predicated on the field-observed SW
speeds.

The LWR model is a kinematic wave theory introduced
by Lighthill, Whitham [5], and Richards [6] which is a
well-known method of structuring SW profiles and
estimating queue lengths. To obtain queue length from
the LWR model, accurate SW speeds as an input to the
LWR model would be required. Conventionally, the
Fundamental Diagram (FD) has been employed as a
base to estimate the SW speeds. Even though LWR
model has proven to be reliable and authentic means of
representing SW profiles and approximating queue
lengths, its performance can be prominently affected by
the uncertainty of the FD from which the SW speeds are
obtained. In a study that focused on the analysis of LEJR
model under uncertain FD, Li et al. [ 7] concluded that
“...if FD cannot be undoubtedly specified, the LWR
model will deteriorate and only make reasonable
predictions...” A detailed discussion of the impact of
uncertainties of FD on the LWR model is discussed in
Section 2.2.

Considering the drawbacks of the FD, this paper
attempts to utilize SW speeds observed from the field to
develop LWR-based SW profiles and queue lengths.
Given two traffic sensors placed at upstream and
downstream locations on a homogenous freeway
segment without on-off ramps, SW speeds can be easily
estimated from the field. This way, the shortcomings of
using SW speeds estimated from uncertain FD can be
overcome.

The purpose of this study is to construct a robust
methodology for calibrating incident simulation model
by employing field observed SW profiles. A road
segment of The Hampton Roads Bridge-Tunnel
(HRBT), linking the cities of Norfolk and Hampton,
Virginia, was utilized as a site to estimate the SW speed
from the field.

This paper is arranged in the following manner. After
this introductory section, a review of the literature on
LWR and uncertainties of FD is provided. The next part
is a discussion on the methodological approach of this
study. Description of the experiment conducted is
presented, the findings were validated, and at last,
conclusions were drawn.

2 Literature Review

2.1 LWR macroscopic model

Lighthill, Whitham [5], and Richards [6] introduced the
first dynamic traffic model which employed the FD and
the traffic conservation law. The equation of fluid
dynamics continuity became the base of this traffic flow
model and is recognized as the first order of LWR traffic
flow model. The LWR model is discussed in detail in
Section 3.3.

Researchers have conducted traffic SW analysis both at
macroscopic and microscopic levels in the past. At the
macroscopic level, the LWR kinematic SW theory was
used to study the dynamics of traffic flow [8] and to
develop traffic SW profile on congested urban arterials
[9]. Lu and Skabardonis [10] developed a numerical
algorithm to assess the SW speed on interstate using
vehicle trajectory data. Additionally, the LWR model
has been effectively implemented in measuring the
incident-induced delay [l11], examining the traffic
transformation and maximum queue lengths due to
incident [12] and estimating the effect to the time and
space on freeways [13]. All these studies have exhibited
that the LWR model has been recognized as an
important instrument in many traffic engineering
applications. However, the accuracy of SW profiles and
queue lengths estimated using the LWR model heavily
depends on the reliability of the FD used to derive the
SW speed.

2.2 Uncertainty in FD

FD is the basics of traffic engineering; however, it has
been a topic of study for many researchers over the past
80 years [14]. Since the pioneering works of
Greenshields [15], which assumed a linear relationship
between speed and traffic density, more advanced and
complicated models had been proposed, each with its
merits and demerits [16]. Though FD has been
successfully applied in many applications, several
questions have been asked on its performance. The
widely scattered flow-density and volume-density
relationships, especially around congested traffic
conditions, have been identified as the essential concern
of FD’s dependability [17]. Kerner [ 18] criticized FD as
it fails to reproduce the spatial-temporal features of
congestion on freeways, accurately. Given the wide
varieties of physical phenomena exhibited by freeway
traffic, there is no such thing as a perfect FD which is
representative of all traffic conditions. Another concern
is the issue of uncertainties in the assumptions that FD
makes, its model parameters, and mechanism of data
collection to formulate the speed-volume-density
relationships. The majority of the researchers worked
with density, while the empirical data available for their
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study was occupancy. Thus, transforming one
parameter into another undermines the accuracy of FD
in representing the traffic [19]. Furthermore, model
equations derived for fitting curves using the
transformed variables are later changed back to the
original variables, which can lead to biased results. In
multi-regime FDs, the problem of continuity at the
boundary of regimes is also another issue that needs to
be addressed.

2.3 Microscopic simulation model calibration

Researchers have broadly utilized microscopic
simulation models in the field of traffic engineering as
a great tool to solve transportation problems. However,
the reliability of this model depends so much on how
well the parameters were calibrated based on real-life
situations. Many studies have been conducted on
calibrating the microscopic simulation model, such as
in [2]-[4], other studies suggested the model calibration
methodology [20]-[22] but very few discussed
calibrations of the model in traffic states during
incident-induced congestion.

3 Methodology

3.1 Description of study area and data used

The westbound direction of the HRBT corridor, which
is a two-lane freeway, linking the cities of Norfolk and
Hampton, Virginia, was employed as the study area.
The geometric layout of the area is shown in Figure 1.
Traffic data (speed, volume, and occupancy)
corresponding to the passage collected by three fixed-
point sensors were used in this study. The traffic data
were aggregated at two-minute intervals. A record of
historical incident data, which happened on the
segments between detectors No. 1 and 2, was provided
by the VDOT. In the freeway section between detectors
No. 1 and 3, there are no on-off ramps, and thus vehicle
count is conserved.

Detector No. |

Incident site
lf Deteclar| Direction af travel

Dietector No, 3
Detector No, 2

o 1 2 4 Kilomaters
L P

Figure 1 Study area and location of detectors

3.2 Estimating field observed queuing and
discharge SW speeds

To determine the queue length, the queuing and the
discharge SW speeds are required as inputs to the LWR
model (as is discussed in Section 3.3). To estimate the
queuing and the discharge SW speeds, time of incident
events were matched with the traffic data. This research
mainly focuses on SW speeds resulting from incidents
blocking both lanes of the WB HRBT corridor.
However, the incident data that VDOT provided did not
include the number of lanes closed. Therefore, to pick
incidents which blocked both lanes, we looked at the
volume count provided by detector No. 1. Whenever the
volume and speed around the time an incident happened
are zero, then we are sure that the incident blocked both
lanes.

SWs typically occur at the boundary between two traffic
states, e.g., when the speed drops below the speed-at-
capacity. In this study, the SW speeds were defined
when the speed of traffic drops below 5 kph (3.1 mph)
and is sustained until the speed of traffic is more than
10 kph (6.2 mph).

To obtain field-observed queuing and discharge SW
speeds, the time when the speed of traffic at detectors
No. 2 and 3 dropped were carefully recorded. Also,
when a drop-in speed was observed, occupancy should
be relatively higher so that we are sure that the
slowdown of traffic is because of SW. Since the
distance between detectors No. 2 and 3 is fixed (1.61
km or | mile), the SW speed will be this distance
divided by the difference in time when the speed
dropped at detector No. 3 and the time speed dropped at
detector No. 2. This is shown in Equations (1) and (2).

w D
q = ta |
(%) .
D
Was = (f_d) (2)
60

Where w, (kph) is the queuing SW speed, wy (kph) is
the discharge SW speed, D (km) is distance between
detectors No. 2 and 3, 1, (minutes) is the time needed for
the queuing SW to move from the downstream detector
to upstream detector, and ¢, (minutes) is the time needed
for the discharge SW to move from the downstream
detector to upstream detector.

Seventeen samples of incidents were used to estimate
the queuing and the discharge SW speeds. Figure 2
shows a scatter plot of queuing SW speeds against the
arrival rate of vehicles (volume of traffic) and shows
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that queuing SW speed is linearly related with the
arrival rate of vehicles.
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Figure2 The relation between arrival rate and
queuing SW speed as observed from the field

Linear regression was fitted to the scatter plot with an
adjusted R-square of 0.82. The arrival rate and queuing
SW were related as shown in Equation (3).

Queuing SW speed = 0.0037 X Arrival rate + 2.53 (3)

As expected. tiEHischarge SW speed was found to be
fairly constant regardless of the volume of traffic. This
is true because the arrival rate has nothing to do with the
speed of vehicles leaving the queue, once the incident
blocking the road is cleared. The mean discharge SW
speed was estimated to be 17.21 kph.

3.3 Estimating queue length using LWR
model

In this section, the general LWR SW model was
formulated. Figure 3 exhibits an incidents SW profile of
a road segment. Point A is the time and space coordinate
that represents the start time and location of an incident.
Point B dffBtes the incident clearing time. Point C
shows the time and space coordinate of the last vehicle
to join the queue. Point D represents the end of delay
generated by the incident from the last vehicle in queue
towards the incident location.

distance
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Figure 3 SW profile due to an incident

Let us assume r signifies the incident duration. As
indicated in Figure 3, r = ty-t,, while -ty defines the
total time from the clearing time, i.e. at the moment
when the closed lane is opened to traffic, to the moment
when the last vehicle joining the queue, ¢p-15 is the total
time from the clearing time back to normal condition,
i.e. when there were no more delays due to the incident,
and Q,, is the maximum queue length. The total delay
(TD) is the sum of the areas of AABC and ABDC
multiplied by the density of each associated traffic state.

Given the queuing SW speed w, and discharge SW
speed wy, from Equations (1) and (2), respectively, and
the incident duration r, using A4CE and ABCF from
Figure 3, the SW speeds can be calculated as in
Equations (4) and (5) as follows:

Qm

Was =3 (4)
O
" et ©

1
Equating the Q,, in Equations (4.} and (5), the total time
from clearing time to the moment the last vehicle enters
the queue, f~tx (minutes) can be formulated as shown
by Equation (6):

Wq.l"

tetg=—1—

s = o (6)
Therefore, the queue length Q,, is given by:

Om = Wys.te_tg (7)

The queue length (km) is obtained as in Equation (8) by
substituting 7~ in the Equation (6) into Equation (7),
expressed as follows:

Q =L Ist|-|WQ'|
" 60|Wa3| - |qu|

(¥

4 Case Study

4.1 Incident scenario

As discussed in Section 3.2, only incident scenarios
which closed both lanes of the HRBT corridor are
considered. In this research, afffincident scenario was
established under moderately congested traffic states
with the volume-to-capacity ratio (VCR) of 0.7, or level
of service (LOS) C. This traffic condition was selected
since it is the states between heavily congflgted and non-
congested traffic conditions. The scenario was
implemented for various incident durations ranging
from 5 to 40 minutes with 5 minutes increments.
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4.2 Calibration of the microsimulation model
in VISSIM

HRBT corridor, shown in Figure 1, was coded,
calibrated, and validated in VISSIM microscopic traffic
simulation software. Observed quantities from the three
detectors were used in calibrating the simulation model.
As a rule of thumb, the data employed on model
validation should be unrelated to the data used for
model calibration. Since this study aims to set up a
methodology for incident simulation model in VISSIM,
the incident-induced queue lengths (obtained from
Equation (8)) were utilized to validate the model. Model
calibration and validation are iterative processes and
continue until the difference between the simulated and
observed measures of effectiveness reach an acceptable
value.

VISSIM employed ten parameters of car-following
driver behavior that can be fine-tuned. These
parameters were named CCO-C@) The first four
parameters (CCO0-CC3) deal with distance separation
between the leading and following vehicles, the
Efbsequent three parameters (CC4-CC6) deal with the
speed difference between the leading and following
vehicles and the last three parameters (CC7-CC9) deal
with acceleration of the following vehicle. For more
discussion on VISSIM driver behavior parameters, the
reader is flferred to [23]. In this study, parameters
calibrated to meet the measures of effectiveness are
CC0, CCl, and CC2. Brief descriptions of CC0, CCl,
and CC2 are as follows:

1

e (CCO (Standstill distance) is the preferred space
between two stationary vehicles. This
parameter critically affects the queue length,
e.g., queue as a result of lane or road blockage.

e C(CCl1 (Headway Time) is the gap between
consecutive  vehicles in seconds. This
parameter  affects the road capacity
significantly.

e (CC2 (Following Variation) is the extra space
beyond safety distance (which is CCO plus
speed of wvehicle times CC1) that a vehicle
requires and controls the longitudinal
oscillation. It influences the capacity of
roadways and safety of simulated vehicles.

A modified chi-square statistic (see Equatifh (9)) GEH
(an abbreviation of its inventor name, Geoffrey E.
Heavers), was employed to assess the goodness of the
@Blibration process. GEH is advantageous as it
considers both the relative and absolute differences
between the simulated and observed datasets [24].

GEH = J (simulated — observed)? )

0.5 * (simulated + observed)

GEH value less than 5 indicates a good fit between
simulated and observed measurements, a GEH value in
€ range of 5 to 10 needs further investigation while a
model with a GEH value greater than 10 is assumed to
be a bad fit [24].

4.3 Modeling incidents in VISSIM

There are several ways of modeling an incident in
VISSIM, and the two most popular are by using a
parked vehicle and by using a signal. In this study, a
signal-controlled is utilized to mimic the incident as the
timing of the signal can be set to represent the incident
duration. In this study, a signal-controlled is utilized to
mimic the incident as the timing of the signal can be set
to represent the incident duration. The signals were
installed at the same location of both lanes as in the
incident scenario. The traffic signal type operated is a
fixed time single-control in the order of red and green
signals. To determine the incident-induced queue length
in VISSIM, ‘queue counters” were used. This feature of
VISSIM measures the queue length (in meters)
upstream from the site of the incident.

5 Results and Discussion

A microscopic model must be calibrated so that it can
replicate the actual traffic conditions. During the initial
stage of the calibration process, the length of vehicles
standing in the queue generated in the VISSIM model
was found to be longer than what is obtained from LWR
SW theory. Thus, CCO value was set to be 5.6 meters to
match the queue length suggested by the LWR model.
Subsequently, to replicate the actual operation of
afternoon freeway traffic (2:00 PM tofgf00 PM) the CC1
and CC2 values were adjusted to be 1 Jsec and 7.5 m,
respectively. The average GEH values for traffic counts
corresponding to the three detectors are 1.175, 0.989,
and 0.828, while for traffic speed¢fire 2.104, 1.299, and
0.173. The model GEH values for traffic count and
traffic speed were 0.997 and 1.192, with standard
deviations of 0.711 and 1.150, respectively. For the IPS
sensor experiment, one mobile beacon was installed on
the moving train while four stationary beacons were
installed at the four corners of the miniature’s platform.
As the train moves on the track, the MINS was used to
estimate the train position and the obtfBkd result is
plotted against the actual train position in Figure 3. It
can be seen in this figure that the [PS estimates closely
aligns the actual track of the miniature.
1

The q.ueue lengths from the VISSIf) model and the
LWR models were matched for the incident durations
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ranging from 5 to 40 minutes by altering the value of
the @hinding distance parameter (CCO0). The alteration in
(lic absolute percentage difference between the VISSIM
model and LWR model queue length is presented in
Figure 4.

ncdent Arabon (mine

53 94 55 56

00 jmeter)

Figure4 The absolute percentage
between queue lengths from the LWR model and
VISSIM model

Using the average value of the fJolute percentage
differences in the figure, the best value for CC0 was
obtained to be 5.4 m. The model was checked once
again for any deviations within the speed and volume
from the simulation, and the result showed that there
were no significant changes.

The simulation for each incident duration was run 10
times. Since VISSIM produce a stochastic output, the
queue length resulted from each simulation is slightly
different. The simulation estimated queue length was
obtained by taking the average of all simulation queue
length. The queue lengthf] standard deviation was
employed to calculate the upper and lower bounds of
the 95% confidence interval (CI), as indicated in
Equations (10) and (11).

difference
-
g - e
o
s “*
R’ = 09998
@ y=083%-020 A
c 3
o © .0
B . Qmax(VISSIM)
£l > *- UB95% CI
o 1 +- LB 95% Cl
[Ty :
g
o

Where X is the average value of queue length from

VISSIM model, ¢ is the standard deviation, « is the

significance leﬁl (1 - confidence level), taz is the
2

corresponding ¢ value of g and n is the number of

simulation runs.

Table 1 compares the queue length from th@LWR
model and VISSIM models. The results confirm th@ffhe
queue lengths from the LWR model are within 95%
confidence interval of the queue lengths from the
simulation model. This demonstrates that the incident
model in VISSIM is replicating the SW propagations as
in LWR model. Figure 5 shows a regression line of the
queue lengths versus the incident duration, where the
queue lengths increase as the inffdent durations
escalate. The figure also shows the upper and lower
bounds of the confidence interval.

5 10 15 20 25 30 35 40
Incident duration (min)

Figure 5 Increase rate of queue length

Ehhe results implied that when incidents occur at traffic
flow of 1155 veh/h/lane (i.e., VCR of 0.7 or LOS C) the
queu@length propagate because of incidents blocking
both lanes of the freeway is 0.53 km for each minute

_ a
Upper Clbound = x + t%v'_ﬁ (10) increment in incident duration.
a
Lower CI bound = ¥ — ta— 11
2. (1
1
Table 1 The result of LWR model and simulation model
r Quaviwr N Standard Qaxwr between CI
(minute) (km) QuaxVISSIM - yyiation  UPPerbound  Lower bound bounds of Quuxyissiv
5 2.59 2.33 040 2.61 2.04 YES
10 5.18 5.01 0.78 5.57 4.46 YES
15 7.77 7.84 0.60 827 741 YES
20 10.35 10.34 0.58 10.75 9.92 YES
25 12.94 13.11 0.44 13.42 12.79 YES
30 15.53 15.60 043 15.91 15.29 YES
35 18.12 18.15 0.58 18.56 17.73 YES
40 20.71 20.81 .88 21.44 20.18 YES
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Equation (12) shows the relationship between queue
length (km) and incident duration (minutes).

Queue length = 0.53x(Incident duration) — 0.20  (12)
1

Juxtaposing the a.ppmach and the results of this study
with other studies are quite challenging, since most
incident modeling studies utilizing microscopic traffic
simulation directed only on controlled freeway lane
closure, for example, work zones [25]. Another study
by [26] aifffed at simulating incidents-induced capacity
reduction but did not investigate the SW speeds and
queue length due to the incident.

6 Summary and Conclusion

Freeway operations are negatively affected by several
factors, and considerable research effort has been made
to address the issues. This study presented a
methodology for calibrating incident models in an
environment of microscopic traffic simulation.
Furthermore, this study has demonstrated that the LWR
model constructed using field data can be a proper
instrument to calibrate an incident model accurately.
The results show that the queue lengths in incident
simulation models can be correctly projected fora given
incident duration. Such models are useful for
apprehending the incidents’ impact on freeways and
analyzing traffic management strategies to lessen the
effect of such random and undesired events.

This study has demonstrated how to obtain more
reliable SW speeds using empirical data from freeways
and overcome the limitations and bias of the ones
obtained from FD. By estimating the SW speeds from
the field, this study has confirmed that there is a
convincing and linear correlation between the queuing
SW speed and arrival rate. On the other hand, this study
also has ratified that the discharge SW speed is
independent of the vehicle arrival rate. Moreover, the
study showed that the results obtained from the field
observed SW fleeds and LWR model could be used to
calibrate an incident model in microscopic traffic
simulation model. This can be useful to estimate the
benefits of advanced traffic management strategies to
minimize the impact of incidents on freeway traffic.

The limitation of this research is that it only considered
incidents that cause all lanes to be closed and left out
the ones that partially close the freeway. Moreover,
since the LWR model is used to obtain queue length, the
research suffers from limitations of LWR model as it
cannot explain some traffic phenomena, e.g., the stop-
and-go traffic conditions and heterogeneous traffic
composition [27]. Therefore, future works on this topic
will focus on modeling incidents that partially close

freeways and calibrating VISSIM model using queue
lengths obtained from the field.
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