Silage Quality of Rations Based on in situ Sorghum-Indigofera by Malcky Telleng 5 **Submission date:** 24-Feb-2023 02:54PM (UTC+0700) **Submission ID:** 2021915829 File name: ilage_Quality_of_Rations_Based_on_in_situ_Sorghum-Indigofera.pdf (185.13K) Word count: 5041 **Character count: 24458** ## NUTRITION OF #### **ANSI**met 308 Lasani Town, Sargodha Road, Faisalabad - Pakistan Mob: +92 300 3008585, Fax: +92 41 8815544 E-mail: editorpjn@gmail.com #### **Pakistan Journal of Nutrition** ISSN 1680-5194 DOI: 10.3923/pjn.2017.168.174 ## Research Article Silage Quality of Rations Based on in situ Sorghum-Indigofera ^{1,2}Malcky Telleng, ³K.G. Wiryawan, ³P.D.M.H. Karti, ³I.G. Permana and ³L. Abdullah ¹Department of Feed and Nutrition, Bogor Agricultural University, Indonesia #### Abstract 5 Background: Intercropping involves growing two or more crops on the same piece of land to produce rations for livestock, particularly ruminants. In this study, the silage quality of *in situ* rations produced from *Sorghum* intercropped with *Indigofera* was evaluated to determine which *Sorghum* variety produced the best silage. Methodology: The pH, Neutral Detergent Fiber (NDF), Acid Detergent Fiber of the pH, Neutral Detergent Fiber (NDF), Acid Detergent Fiber (NDF), ammonia-N (N-NH₃), Volatile Fatty Acids (VFA) and total bacteria in silage for use *in situ* rations were verified. Experiments were conducted using a Completely Randomized Design (CRD) with three replications of three factors: (1) *Sorghum* variety (Patir-37 and Citayam-33), (2) *Indigofera* composi (32) (30, 40 and 50% *Indigofera*) and (3) Microbial inoculant (*Lactobacillus plantarum*, *Lactobacillus casei* and non-microbial inoculant). Data were analyzed using analysis of variance and HSD test. Results: For all rations tested, the pH and N-NH₃ values indicated good ensilage. Rations that included the *Sorghum* variety Citayam-33 had lower pH and N-NH₃ production relative to those with Patir-37. In whole crop silages, the inoculants did not significantly affect fermentation. Meanwhile, rations with higher amounts of *Indigofera* (up to 50%) had lower NDF and ADF. Conclusion: Together the results show that *in situ* rations made from intercropped *Sorghum* and *Indigofera* ensilage well and different compositions can be obtained directly from intercropped fields to produce rations that improve ruminant performance. Key words: Composition, intercropping, in situ ration, silage, varieties 35 Received: October 20, 2016 Accepted: December 10, 2016 Published: February 15, 2017 Citation: Ma(4) Telleng, K.G. Wiryawan, P.D.M.H. Karti, I.G. Permana and L. Abdullah, 2017. Silage quality of rations based on in situ Sorghum-Indigofera. Pak. J. Nutr., 16: 168-174. Corresponding Author: Malcky Telleng, Department of Feed and Nutrition, Bogor Agricultural University, Indonesia Copyright: © 2017 Malcky Telleng et al. This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. Competing Interest: The authors have declared that no competing interest exists. Data Availability: All relevant data are within the paper and its supporting information files. ²Department of Nutrition and Feed Science, Faculty of Animal Husbandry, Sam Ratulangi University, Indonesia ³Department of Nutrition Science and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Indonesia #### INTRODUCTION Inconsistent supplies of reliable, high-quality forage, especially during the dry season are a major constraint to improving ruminant performance. About 70% of forages used by farmers originate from local grasses that have low protein content (7-9%), high amounts of crude fiber and low digestibility. Rations that have crude protein contents below 6-7% depress microbial activity in the rumen due to a lack of N¹. As such, farmers often add nutritional concentrates to ruminant rations to improve feed quality and nutrient intake. However, these concentrates are associated with regional increases in the price of raw feed materials and also have varying qualities. One alternative to these concentrates for complementing the low protein content of grass-based rations is legume forage that has high contents of crude protein vitamins and specific minerals² such as P and Ca. Sorghum (Sorghu₂₂ bicolor L.) is a cereal plant of the Gramineae family that has great potential for supplementing fodder resources because of its wide adaptation, rapid growth and high green and dry fodder yields, as well as its high ratoon capacity. As such, Sorghum can be grown on poorer quality land to produce ruminant forage. Citayam and brown midrib (BMR) strains are genetically mutated Sorghum that have superior agronomic traits. One im 31 tant Sorghum cultivar is the BMR mutant line like Patir-37, which has higher dry matter production and lower lignin content and is comparable to the BMR mutant³ line Patir-3.1. Legume forage has a high crude protein content (20-30%)⁴ and is frequently used in ruminant feed. *Indigofera* legumes such as *Indigofera zollingeriana* have good growth with high production and nutritive value⁵⁻⁷. Moreover, incorporation of *Indigofera zollingeriana* increased the protein content, dry matter degradability and Volatile Fatty Acid (VFA) values of rations in an *in vitro* rumen model⁸. Legume and *Sorghum* crops are often grown separately and mixed at the time of feeding. Yet these crops can be grown simultaneously using intercropping, which is one of the most common cultivation practices used in sustainable agricultural systems and plays an important role in increasing productivity and yield stability. Furthermore, intercropping can conserve soil water by providing shade, buffering winds and increasing infiltration with mulch layers that improve soil structure. The enhanced productivity of multi-species agroecosystems through intercropping relative to that of monospecific agroecosystems (i.e., each species is grown alone) can be explained by complementarity and facilitation processes that result in improved resource use. Tropical forages are abundant during the wet season but usually are unavailable during the dry season. If forage is not harvested and consumed during the wet season, it will continue to grow and the nutritive value will decrease as the plants become more fibrous and lignified. Excess tropical forage available during the wet season can be conserved silage for use during the dry period through ensiling 10. The aim of this study was to determine the effect of ensiling on silage quality of rations produced from crops grown using intercropping of *Sorghum* and the legume *Indigofera*, as well as determine the composition of rations that optimizes nutritional value. #### MATERIALS AND METHODS Silage was produced from harvests of the *Sorghum* mutant lines Citayam-33 and BMR Patir-3.7 that were grown with *Indigofera* legumes in an intercropping system used at the research farm station of the Bogor Agricultural University Jonggol Animal Science Teaching and Research Unit of the Faculty of Animal Science. *Lactobacillus plantarum* and *Lactobacillus casei* were used as inocula (isolates from the Laboratory of PAU IPB). Sorghum and Indigofera biomass were harvested simultaneously when 80% of the Sorghum was flowering (~90 days for planting). Sorghum plants were defoliated above the first node from the soil surface (~10 cm above ground). Indigofera plants were defoliated 100 cm above the soil surface. Whole Sorghum and Indigofera plant matter (stem, leaf and grain) was chopped into 2-3 cm lengths and then wilted for 12 h separately. Silage proportions were adjusted per 10 kg silage and active Lactic Acid Bacteria (LAB) were sprayed onto the silage at 1 mL kg⁻¹ of forage or about 10°CFU g⁻¹. Polyethylene garbage bags (15 kg capacity) were used as silos and covered by 3 layers bags to prevent leaks. A vacuum pump was used to remove the air from the bags to produce an anaerobic atmosphere. The mixtures were fermented for 30 days, after which the silage qualities were assessed. Immediatel and on opening the bags, the pH of 25 g of each silage mixture mixed with 100 mL distilled water was determined using a glass electrode pled to a pH meter. Silage fiber components, including Neutral Detergent Fiber (NDF) and Acid Detergent Fiber (ADF) were determined using the methods described by van Soest. Ammonia-N (N-NH₃) concentrations were determined by micro-diffusion using the Conway method. The VFA was analyzed using gas chromatography and the total bacteria were counted using the Total Plate Count (TPC) method. Experiments were conducted at the Field Laboratory, Faculty of Animal Science, Bogor Agricultural University [Jonggol Animal Science Teaching and Research Unit (UP3J)] between November, 2014 and April, 2015. The study used a completely range mized factorial design with three factors (2×3×3) and three replicates. The first factor was Sorghum variety [Patir-37 (S1) and Citayam-33 (S2)]. The second factor was Indigofera composition [30% Indigofera (I1), 40% Indigofera (I2) and 50% Indigofera (I3)]. The third factor was microbial inoculant [L. gantarum (B1), L. casei (B2) and non-bacterium (B3)]. The data were then statistically analyzed using analysis of variance (ANOVA) by means of MINITAB (Version 16). Honestly Significant Difference (HSD) was applied #### RESULTS to determine the difference among treatments. Differences **pH and N-NH₃:** The pH of the silage ranged between 3.80 and 4.53, whereas, the N-NH₃ values were between 0.958 and 1.557 mM (Table 1). These values indicate that the ensilage of the treatments was effective. There were significant differences (p<0.01) in pH and N-NH₃ among the treatments with different *Sorghum* varieties wherein silage composed of Citayam-33 had lower pH and N-NH₃ values than did Patir-37. There were no significant differences (p>0.05) in pH and N-NH₃ among compositions of *Indigofera*, microbial inoculant type and the interaction between these factors. NDF and ADF: Acid Detergent Fiber (ADF) and Neutral Detergent Fiber (NDF) are frequently used as standard forage testing techniques for fiber analysis. The average NDF of the silage ranged between 58.55 and 65.23% and the average ADF ranged between 43.72 and 50.04% (Table 2). There were significant differences (p<0.01) in the NDF and ADF contents among the silage with different *Indigofera* amounts such that silage with 30% *Indigofera* had higher NDF and ADF content than did silage with 40 and 50% *Indigofera*. Meanwhile, there were non-significant differences (p>0.05) in NDF and ADF among the different *Sorghum* varieties, bacterial inocula and among all interactions between these factors. **Total bacteria and VFA:** Total bacteria in the silage ranged between 8.27 and 8.72 log₁₀ CFU mL⁻¹ and the total VFA was between 54.99 and 72.03 mM (Table 3). There were non-significant differences (p>0.05) in VFA and total bacteria Table 1: pH and N-NH₃ in situ ration silage were considered significant at p<0.05. | | | <i>Indigofera</i> composi | ion (%) | | | |-----------------------------|------------|---------------------------|-------------------|-------------------|--------------------------| | Varieties | Inoculants | I1 | | I3 | Mean | | pH | | | | | | | Patir-37 | LP | 4.00 ± 0.20 | 4.27±0.35 | 4.13 ± 0.75 | 4.13 ± 0.44 | | | LC | 4.23±0.31 | 4.37 ± 0.42 | 4.07 ± 0.47 | 4.22 ± 0.37 | | | NB | 4.40 ± 0.10 | 4.53±0.15 | 4.43 ± 0.55 | 4.42 ± 0.30 | | Mean | | 4.21 ± 0.26 | 4.39±0.31 | 4.18 ± 0.54 | 4.26±0.38 ^A | | Citayam-33 | LP | 3.80 ± 0.17 | 3.90 ± 0.17 | 3.93 ± 0.31 | 3.88 ± 0.20 | | | LC | 3.93 ± 0.29 | 3.97±0.15 | 4.03 ± 0.31 | 3.98 ± 0.23 | | | NB | 3.97 ± 0.06 | 4.00 ± 0.10 | 4.23 ± 0.06 | 4.07 ± 0.14 | | Mean | | 3.90±0.19 | 3.96±0.13 | 4.07 ± 0.25 | 3.97±0.20 ⁸ | | Mean inoculant | LP | 3.90 ± 0.20 | 4.08 ± 0.32 | 4.03 ± 0.52 | 4.01 ± 0.36 | | | LC | 4.08±0.31 | 4.17±0.36 | 4.05 ± 0.36 | 4.10±0.33 | | | NB | 4.18±0.25 | 4.27±0.31 | 4.28 ± 0.35 | 4.24±0.29 | | Mean Indigofera composition | | 4.06 ± 0.27 | 4.17±0.32 | 4.12 ± 0.41 | | | N-NH ₃ (mM) | | | | | | | Patir-37 | LP | 1.137±0.413 | 1.529±0.589 | 1.674±0.754 | 1.447±0.574 | | | LC | 1.199±0.374 | 1.550±0.744 | 1.302±0.591 | 1.350±0.534 | | | NB | 1.385±0.189 | 1.591±0.621 | 1.653±0.719 | 1.543±0.499 | | Mean | | 1.240 ± 0.315 | 1.557±0.568 | 1.543 ± 0.626 | 1.447±0.522 ^A | | Citayam-33 | LP | 0.868 ± 0.215 | 1.033 ± 0.189 | 1.095 ± 0.258 | 0.999±0.218 | | | LC | 1.033±0.095 | 1.033±0.199 | 1.219±0.719 | 1.095±0.387 | | | NB | 0.971 ± 0.156 | 0.951 ± 0.218 | 1.095 ± 0.449 | 1.006±0.270 | | Mean | | 0.958 ± 0.158 | 1.006 ± 0.180 | 1.137 ± 0.447 | 1.033±0.2928 | | Mean inoculant | LP | 1.002 ± 0.329 | 1.281 ± 0.477 | 1.385±0.596 | 1.223±0.480 | | | LC | 1.116±0.260 | 1.292±0.563 | 1.261 ± 0.590 | 1.223±0.471 | | | NB | 1.178 ± 0.274 | 1.271 ± 0.544 | 1.374 ± 0.617 | 1.274±0.478 | | Mean Indigofera composition | | 1.099 ± 0.282 | 1.281 ± 0.497 | 1.340±0.567 | | Means in the same column and species with different superscripts in uppercase highly differ significantly (p<0.01) and means in the same column and species with different superscripts in lowercase differ significantly (p<0.05), LP: Lactobacillus plantarum, LC: Lactobacillus casei, NB: Non-bacterium #### Pak. J. Nutr., 16 (3): 168-174, 2017 Table 2: NDF and ADF in situ ration silage | | | <i>Indigofera</i> composi | tion (%) | | | |-----------------------------|-----------|---------------------------|-------------------------|------------------|------------| | Varieties | Inoculant | I1 | l2 | I3 | Mean | | NDF | | | | | | | Patir-37 | LP | 61.90±6.65 | 60.95±7.62 | 57.71±7.15 | 60.19±6.48 | | | LC | 65.49±7.10 | 61.53±6.30 | 57.96±7.69 | 61.66±6.93 | | | NB | 67.54±1.55 | 61.75±0.93 | 59.99±4.48 | 63.09±4.19 | | Mean | | 64.98±5.51 | 61.41±4.98 | 58.55±5.81 | 61.65±5.88 | | Citayam-33 | LP | 63.02 ± 3.67 | 61.26±2.13 | 60.73 ± 4.16 | 61.67±3.15 | | | LC | 64.54±2.02 | 60.26 ± 1.48 | 60.99±3.41 | 61.93±2.90 | | | NB | 68.13 ± 3.07 | 60.39±5.87 | 61.54±2.67 | 63.35±5.19 | | Mean | | 65.23 ± 3.60 | 60.64±3.24 | 61.08 ± 3.03 | 62.32±3.81 | | Mean inoculant | LP | 62.46±4.84 | 61.10±5.01 | 59.22±5.49 | 60.93±5.00 | | | LC | 65.02 ± 4.70 | 60.90±4.15 | 59.48±5.58 | 61.80±5.11 | | | NB | 67.84 ± 2.56 | 61.07±3.83 | 60.76±3.41 | 63.22±4.58 | | Mean Indigofera composition | | 65.11±4.52 ^A | 61.02±4.10 ⁸ | 59.82±4.688 | | | ADF | | | | | | | Patir-37 | LP | 48.07±0.81 | 47.03±2.37 | 42.89 ± 2.73 | 46.00±3.01 | | | LC | 48.19±3.21 | 47.10±1.47 | 43.07 ± 1.84 | 46.12±3.07 | | | NB | 50.78±4.00 | 47.40±1.87 | 45.21 ± 4.09 | 47.80±3.87 | | Mean | | 49.01 ± 2.92 | 47.18±1.69 | 43.72±2.86 | 46.64±3.32 | | Citayam-33 | LP | 47.30±2.22 | 45.96±2.48 | 47.20±0.83 | 46.82±1.83 | | • | LC | 49.68 ± 2.93 | 46.57±4.56 | 47.62 ± 2.24 | 47.96±3.24 | | | NB | 53.16±1.84 | 47.91±6.36 | 47.73 ± 4.21 | 49.60±4.75 | | Mean | | 50.04 ± 3.28 | 46.81±4.19 | 47.52±2.43 | 48.12±3.54 | | Mean inoculant | LP | 47.68 ± 1.55 | 46.50±2.25 | 45.04 ± 2.97 | 46.41±2.45 | | | LC | 48.94 ± 2.87 | 46.84 ± 3.04 | 45.34±3.10 | 47.04±3.20 | | | NB | 51.97±3.07 | 47.66±4.20 | 46.47±3.96 | 48.70±4.30 | | Mean Indigofera composition | | 49.53±3.06 ^A | 47.00±3.118 | 45.62 ± 3.238 | | Means in the same column and species with different superscripts in uppercase highly differ significantly (p<0.01) and means in the same column and species with different superscripts in lowercase differ significantly (p<0.05), LP: Lactobacillus plantarum, LC: Lactobacillus casei, NB: Non-bacterium Table 3: VFA and total bacteria of in situ ration silage | | | <i>Indigo fera</i> composit | on (%) | | | |------------------------------------|-------------------|-----------------------------|-------------------|-------------|-------------| | Varieties | Inoculant | I1 | l2 | I3 | Mean | | VFA (mM) | | | | | | | Patir-37 | LP | 68.91±15.81 | 68.73±5.95 | 58.42±5.95 | 65.36±10.36 | | | LC | 58.42±11.90 | 61.86 ± 10.31 | 61.86±10.31 | 60.71±9.57 | | | NB | 61.72±10.53 | 65.15 ± 15.94 | 61.72±10.53 | 62.86±11.04 | | Mean | | 63.02±12.13 | 65.25 ± 10.38 | 60.67±8.12 | 62.98±10.12 | | Citayam-33 | LP | 58.42±5.95 | 58.42±5.95 | 54.99±5.95 | 57.28±5.43 | | | LC | 58.42±5.95 | 68.73 ± 15.75 | 54.99±5.95 | 60.71±10.87 | | | NB | 58.28±12.03 | 63.58±7.87 | 72.03±18.11 | 64.63±13.03 | | Mean | | 58.38±7.34 | 63.58 ± 10.31 | 60.67±13.13 | 60.87±10.34 | | Mean inoculant | LP | 63.67±12.13 | 63.58±7.76 | 56.70±5.65 | 61.32±9.04 | | | LC | 58.42±8.42 | 65.30 ± 12.49 | 58.42±8.42 | 60.71±9.93 | | | NB | 60.00±10.29 | 64.37±11.28 | 66.87±14.40 | 63.74±11.75 | | Mean <i>Indigofera</i> composition | on | 60.70±10.02 | 64.41 ± 10.07 | 60.67±10.59 | | | Total bacteria (log 10 CFU ml | L ⁻¹) | | | | | | Patir-37 | LP | 8.45±0.41 | 8.43±0.43 | 8.54±0.17 | 8.47±0.31 | | | LC | 8.38±0.41 | 8.61±0.27 | 8.52±0.16 | 8.51±0.28 | | | NB | 7.97±0.31 | 8.58±0.29 | 8.59±0.27 | 8.38±0.40 | | Mean | | 8.27±0.40 | 8.54±0.30 | 8.55±0.18 | 8.45±0.33 | | Citayam-33 | LP | 8.66±0.21 | 8.61±0.31 | 8.78±0.26 | 8.68±0.24 | | | LC | 8.53±0.28 | 8.63±0.31 | 8.72±0.22 | 8.63±0.25 | | | NB | 8.58±0.19 | 8.58±0.34 | 8.67±0.27 | 8.61±0.24 | | Mean | | 8.59±0.21 | 8.61 ± 0.28 | 8.72±0.22 | 8.64±0.24 | | Mean inoculant | LP | 8.55±0.31 | 8.52±0.35 | 8.66±0.24 | 8.58±0.29 | | | LC | 8.46±0.33 | 8.62±0.26 | 8.62±0.20 | 8.57±0.26 | | | NB | 8.27±0.41 | 8.58 ± 0.28 | 8.63±0.25 | 8.50±0.34 | | Mean Indigofera composition | on | 8.43±0.35 | 8.58±0.28 | 8.64±0.22 | | LP: Lactobacillus plantarum, LC: Lactobacillus casei, NB: Non-bacterium content among the treatments with different *Indigoflera* compositions, microbial inoculants and the interaction between these factors. In whole crop silages, the finding that inoculants did not significantly affect fermentation could be due to the higher numbers of epiphytic LAB used and the good ensiling characteristics of the crop materials. #### DISCUSSION All silages examined in this study had pH<4, which is required for stability during fermentation. In well-preserved silageneral practice specifies that pH values should be < 4.5. Ensiling is a preservation method for most crops that is based on natural lactic acid fermentation under anaerobic conditions, whereby Lactic Acid Bacteria (LAB) convert Water Soluble Carbohydrates (WSC) into organic acids, mainly lactic acid. The lactic acid concentration of inoculated silages typically ranges between 83 and 85.9% of total silage acid11. Successful silage production depends on anaerobic storage of material that contains adequate levels of WSC that can be fermented by LAB into lactic acid, which preserves the materials due to a rapid reduction in pH. Thus to improve LAB growth, adequate amounts of Water Soluble Carbohydrate (WSC) should be available as a fermentation substrate for LAB or aerobic bacteria during ensiling¹². The pH value of silage produced from Sorghum Citayam-33 intercropped with Indigofera was lower than that for Patir-37, likely because of higher amounts of WSC in the former treatment. Meanwhile, our finding that the inoculant type did not influence the silage pH was consistent with earlier studies using maize silage 13. The N-NH₃ content of the inoculated silage was between 0.29 and 0.43 mM11. The N-NH3 content in silage reflects the degree of protein degradation and is an indicator of the total amount of N degraded during ensiling. As such, the N-NH₃ content of the silage can be used to determine its quality. In well-preserved silages, the N-NH₃ content is typically below 100 g kg $^{-1}$ total N. The best silage has NH $_3$ <50 g N kg $^{-1}$ total N whereas, good silage has NH₃ contents between 50-100 g N kg⁻¹ total N. High concentrations of ammonia arise from excessive protein breakdown in the silo that is caused by a steady decrease in pH or excessive Clostridia or enterobacteria growth. In general, silage with higher water contents has higher ammonia concentrations. The ammonia concentration of silage is also an indicator of silage crop damage, because ammonia can increase silage pH. The higher pH value we saw for Patir-37 Sorghum treatments was likely due to its higher N-NH₃ cogant. During ensiling, plant proteases degrade proteins to peptides and free amino acids, which are in turn degraded to ammonia and non-protein nitrogenous fractions largely by Clostridia proteases. The N-NH $_3$ is an indicator of the proportion of total N that has been completely degraded during ensiling and can be used to assess secondary fermentation. The lower content of N-NH $_3$ of silage produced from Citayam-33 intercropped with *Indigofera* was likely due to its low pH value that would inhibit the growth of proteolytic Clostridia and reduce the amount of protein degradation. The NDF approximates the total cell wall constituents including hemicellulose, whereas, ADF primarily represents cellulose and lignin. The NDF and ADF represent the fibrous portions of plant material and influence digestibility and energy availability from forage. As such, NDF and ADF can be used to predict intake potential and calculate digestibility, respectively. As the fiber content increases, the forage quality declines. The dynamics of ADF content are consistent with that of the NDF content during generative development of plants. As plants mature, the crude protein decreases concurrent with increases in starch and NDF14. Here the NDF values ranged from 54.30-61.28% and ADF ranged from 31.72-38.40%¹⁵. The NDF and ADF values were highest for the treatment with 30% Indigofera, which had a higher structural carbohydrate concentration relative to treatments with 40 and 50% Indigofera. Mature plants are typically higher in fiber and have lower Non-Structural Carbohydrate (NSC) content relative to immature plants. As such, environmental conditions that restrict growth (NSC utilization) to a greater extent than photosynthesis (NSC synthesis) would increase the amount of NSC in plant herbage. Starch, a storage carbohydrate, is present in low amounts in young vegetative tissues (tiller to flowering stages) and then increases during maturation¹⁴, the fiber fraction of plants that excluses hemicellulose from the total fiber can be expressed as Acid Detergent Fiber (ADF). Relative Feed Value (RFV) increases as the fiber (NDF or ADF) values decline. The NSC content and type depends on the plant species, plant part and development stage, as well as environmental conditions such as root and shoot temperature during growth. Other factors that affect NSC are light intensity and duration, plant nutrient availability and water status14. The main source of energy for ruminants is VFA originating from microbial fermentation of carbohydrates in the rumen. The VFA are absorbed from the rumen wall into the circulation. Lower VFA values indicate a lower rate of carbohydrate degradation by microbes. In this study, the total VFA produced was still below normal levels (70-150 mM)⁴. The treatments did not have different effects on VFA production due to the overhaul of silage dry matter. During both fermentation and respiration, organic matter is hydrolyzed into CO_2 , H_2O and energy. The EFSA ¹⁶ reported that additives containing *Saccharomyces cerevisiae*, *Lactobacillus plantarum* and *Lactobacillus casei* did not improve silage production. Moreover, the total VFA for legume silage mixed with Citayam and BMR 36 *Sorghum* was 52.5 and 59.28 mM, respectively¹⁷. Thomas et al.¹⁵ reported that total LAB counts for silage grass-legume mixtures ranged from 2.84×10^9 CFU mL⁻¹ with legume to 1.62 × 109 CFU mL⁻¹ without legume, the addition of LAB to 40% legumes resulted in lower bacterial counts $(2.53\times10^7 \text{ to } 3.9\times10^7 \text{ CFU mL}^{-1})$. Legumes with 70% LAB ranged from 2.84×10^8 to 5.98×10^8 CFU mL⁻¹ and the total bacteria was between¹⁵ 5.76 and 8.76 log CFU g⁻¹. Higher numbers of LAB can arise from high levels of WSC in the silage. The higher bacterial population could also be due in part to an increase in the numbers of amylolytic bacteria when more fermentable substrates are available. Bacterial proliferation rates increase with increasing supplies of carbohydrates that are more readily fermentable¹⁸. The count of epiphytic LAB, yeast and enterobacteria was approximately $10^8\,\text{CFU}\,g^{-1}$ in the crop material. Therefore, bacteria in the inoculants would not dominate the ensiling process or affect fermentation before pH declined to values needed for silage stability. Biochemical differences in plant tissue composition could affect the composition of microbial communities in silage 19. Furthermore, the pH from lactic acid production can inhibit the growth of other microbes such as yeast, bacilli, enterobacteria and Clostridia and eventually even LAB themselves²⁰. #### CONCLUSION Citayam-33 *Sorghum* had lower pH and N-NH₃ production than did Patir-37 *Sorghum*. The silage pH ranged between 3.80 and 4.53 and the N-NH₃ content was between 0.958 and 1.557 mM, indicating that the treatments ensilaged very well. In whole crop silages, inoculants did not significantly affect fermentation because of the higher numbers of epiphytic LAB and the good ensiling characteristics of this crop. Incorporation of up to 50% *Indigofera* resulted in lower NDF and ADF. The results also revealed that a combination of *Sorghum* varieties with different *Indigofera* compositions and inoculant bacteria in an intercropping system did not affect VFA or total bacteria levels. #### SIGNIFICANCE STATEMENT A comprehensive study of silage for use in *in situ* rations made from intercropped *Sorghum* and *Indigofera* will be beneficial for improving ruminant performance. Ensilage of the different treatments was good and could produce a healthy rumen environment with a pH that optimizes microbial activity. Improving microbial activity in the rumen will enhance feed intake, digestibility and feed metabolism. Together these factors can contribute to better production performance and efficiency as well as animal health. Commercial *in situ* rations produced from intercropped *Sorghum* and *Indigofera* could also increase ruminant industry profits and support sustainability of ruminant production. #### ACKNOWLEDGMENT The authors would like to thank Directorate General of Higher Education of Indonesia for Postgraduate Scholarship (BPPDN) and supporting this study through Doctoral Grant-Programs (Project ID DIPA No. 023.04.1.673453/2015). #### REFERENCES - Ullah, M.A., N. Hussain, H. Schmeisky and M. Rasheed, 2015. Improving fodder quality of panicum grass through intercropping of legumes and their inoculation. 271. J. Agric. Res., 28: 223-230. - Paulson, J., M. Raeth-Knight and J. Linn, 2008. Grass vs. legume forage for dairy cattle. Forage Focus-Dairy-December 708, University of Minnesota, Minnesota. - Sriagtula, R., P.D.M.H. Karti, L. Abdullah, Supriyanto and D.A. Astuti, 2016. Growth, biomass and nutrient production of brown midrib sorghum mutant lines at different harvest 13 es. Pak. J. Nutr., 15: 524-531. - McDonald, P., R.A. Edwards, J.F.D. Greenhalgh, C.A. Morgan, L.A. Sinclair and R.G. Wilkinson, 2010. Animal Nutrition. gip Edn., Prentice Hall, Harlow, England. Hassen, A., N.F.G. Rethman, Z. Apostolides and W.V. Niekerk, - Hassen, A., N.F.G. Rethman, Z. Apostolides and W.V. Niekerk, 2008. Forage production and potential nutritive value of 24 shrubby *Indigofera* accessions under field conditions in auth Africa. Trop. Grasslands, 42: 96-103. - Abdullah, L., 2010. Herbage production and quality of shrub Indigofera treated by different concentration of foliar fertilizer. Media Peternakan, 33: 169-175. - Abdullah, L., 2014. Prospektif agronomi dan ekofisiologi Indigofera zollingeriana sebagai tanaman penghasil hijauan gakan berkualitas tinggi. Pastura, 3: 79-83. - Suharlina, D.A. Astuti, Nahrowi, A. Jayanegara and L. Abdullah, 2016. Nutritional evaluation of dairy goat rations containing Indigofera zollingeriana by using in vitro rumen fermentation technique (RUSITEC). Int. J. Dairy Sci., 18, 100-105. - Mobasser, H.R., M.R. Vazirimehr and K. Rigi, 2014. Effect of intercropping on resources use, weed management and forage quality. Int. J. Plant Anim. Environ. Sci., 4: 706-713. - Reiber, C., R. Schultze-Kraft, M. Peters, P. Lentes and V. Hoffmann, 2010. Promotion and adoption of silage technologies in drought-constrained areas of Honduras. Trop. 1723 slands, 44: 231-245. - Jalc, D., A. Laukova, M.P. Simonova, Z. Varadyova and P. Homolka, 2009. Bacterial inoculant effects on corn silage fermentation and nutrient composition. Asian-Aust. J. Anim. Sci. 22: 977-983 - Zhang, L., C.Q. Yu, M. Shimojo and T. Shao, 2011. Effect of different rates of ethanol additive on fermentation quality of napiergrass (*Pennisetum purpureum*). Asian-Aust. J. Anim. 23, 24: 636-642. - 13. Muck, R.E., 2010. Silage additives and management issues. Proceedings of the 45 aho Alfalfa Forage Conference, 2 bruary 16-17, 2010, Burley, Idaho, USA., pp. 49-55. - Chatterton, N.J., K.A. Watts, K.B. Jensen, P.A. Harrison and W.H.Horton, 2006. Nonstructural carbohydrates in oat forage. Nutr., 136: 2111S-2113S. Ihomas, M.E., J.L. Foster, K.C. McCuistion, L.A. Redmon and - Thomas, M.E., J.L. Foster, K.C. McCuistion, L.A. Redmon and R.W. Jessup, 2013. Nutritive value, fermentation characteristics and *in situ* disappearance kinetics of sorghum silage treated with inoculants. J. Dairy Sci., 96: 7120-7131. - EFSA., 2013. Scientific opinion on the safety and efficacy of iron compounds (E1) as feed additives for all species: Iron chelate of amino acids, hydrate, based on a dossier submitted by Zinpro Animal Nutrition Inc. EFSA J., Vol. 11. - Ardiansyah, K.G. Wiryawan and P.D.M.H. Karti, 2016. Silage quality of sorghum harvested at different times and its combination with mixed legumes or concentrate evaluated in vitro. Med. Peternakan, 39: 53-60. - Lettat, A., F. Hassanat and C. Benchaar, 2013. Corn silage in dairy cowdiets to reduce ruminal methanogenesis: Effects on the rumen metabolically active microbial communities. J. Dairy Sci., 96: 5427-5248. - Brusetti, L., S. Borin, A. Rizzi, D. Mora, C. Sorlini and D. Daffonchio, 2008. Exploration of methods used to describe bacterial communities in silage of maize (*Zea mays*) cultivars. iron. Biosafety Res., 7: 25-33. - Sakhawat, I., 2011. The effect 33 silage quality on gross energy losses. Degree Project 360, Department of Animal Nutrition and Management, Swedish University of Agricultural Science. ### Silage Quality of Rations Based on in situ Sorghum-Indigofera | ORIGINALITY REPORT | | | |---------------------------------------|---------------------|---------------------| | 19% 18% INTERNET SOURCE | 16% ES PUBLICATIONS | %
STUDENT PAPERS | | PRIMARY SOURCES | | | | dergipark.org.tr Internet Source | | 1 % | | repository.unri.ac.id Internet Source | | 1 % | | media.neliti.com Internet Source | | 1 % | | docsdrive.com Internet Source | | 1 % | | animalsciencejourna Internet Source | ıl.usamv.ro | 1 % | | 6 hdl.handle.net Internet Source | | 1 % | | jpi.faterna.unand.ac Internet Source | .id | 1 % | | repository.unhas.ac. | id | 1 % | | 9 academic.oup.com Internet Source | | 1 % | | worldwidescience.or | g | | etd.repository.ugm.ac.id 11 Internet Source Dunière, L., J. Sindou, F. Chaucheyras-1 % 12 Durand, I. Chevallier, and D. Thévenot-Sergentet. "Silage processing and strategies to prevent persistence of undesirable microorganisms", Animal Feed Science and Technology, 2013. Publication Jarmuji ., U. Santoso, B. Brata. "Effect of Oil 1 % 13 Palm Fronds and Setaria sp. as Forages Plus Sakura Block on the Performance and Nutrient Digestibility of Kaur Cattle", Pakistan Journal of Nutrition, 2017 **Publication** 1 % www.paspk.org Internet Source medpet.journal.ipb.ac.id Internet Source Divya Rathi, Akanksha Pareek, Saurabh 16 Gayali, Subhra Chakraborty, Niranjan Chakraborty. "Variety-specific nutrient acquisition and dehydration-induced proteomic landscape of grasspea (Lathyrus sativus L.)", Journal of Proteomics, 2018 **Publication** | 17 | A. Bain, I.K.G. Wiryawan, D.A. Astuti, C. Arman, S. Suharti. "Fermentability and Nutrient Digestibility of Ration Supplemented with Soybean Oil Calcium Soap and Cashew Fruit Flour", Pakistan Journal of Nutrition, 2017 | <1% | |----|---|-----| | 18 | www.tandfonline.com Internet Source | <1% | | 19 | stud.epsilon.slu.se Internet Source | <1% | | 20 | iopscience.iop.org
Internet Source | <1% | | 21 | André Ricardo Gomes Bezerra, Danilo Gusmão de Quadros, Alexandro Pereira Andrade. "Establishment and biomass production of gamba and palisade grasses associated with pearl millet", Revista de Ciências Agrárias, 2019 | <1% | | 22 | P. Sanjana Reddy. " Sorghum, (L.) Moench ", Wiley, 2017 Publication | <1% | | 23 | core.ac.uk
Internet Source | <1% | | 24 | www.animbiosci.org Internet Source | <1% | | | | | | 25 | Internet Source | <1% | |----|---|-----| | 26 | journalofbabylon.com Internet Source | <1% | | 27 | repository.unam.edu.na Internet Source | <1% | | 28 | "Ecological Intensification of Natural
Resources for Sustainable Agriculture",
Springer Science and Business Media LLC,
2021
Publication | <1% | | 29 | Lorenzo Brusetti, Sara Borin, Aurora Rizzi,
Diego Mora, Claudia Sorlini, Daniele
Daffonchio. "Exploration of methods used
to describe bacterial communities in silage
of maize () cultivars ", Environmental
Biosafety Research, 2008
Publication | <1% | | 30 | beasiswa.ristekdikti.go.id Internet Source | <1% | | 31 | 123dok.com
Internet Source | <1% | | 32 | A. Wenda, M.M. Telleng, W.B. Kaunang. "Pengaruh jarak tanam terhadap pertumbuhan legum Indigofera zollingeriana dengan rumput Pennisetum purpureum cv Mott dalam sistem tumpangsari", ZOOTEC, 2022 Publication | <1% | | 33 | repo.unand.ac.id Internet Source | <1% | |----|--|-----| | 34 | Selim Esen, Evren Cabi, Fisun Koç. "Effect of freeze-dried kefir culture inoculation on nutritional quality, in vitro digestibility, mineral concentrations, and fatty acid composition of white clover silages", Biomass Conversion and Biorefinery, 2022 | <1% | | 35 | www.researchgate.net Internet Source | <1% | | 36 | repository.uaiasi.ro Internet Source | <1% | | 37 | repository.uin-suska.ac.id Internet Source | <1% | | 38 | www.plantbreedbio.org Internet Source | <1% | | 39 | R. Sriagtula, P.D.M.H. Karti, L. Abdullah,
Supriyanto ., D.A. Astuti. "Growth, Biomass
and Nutrient Production of Brown Midrib
Sorghum Mutant Lines at Different Harvest
Times", Pakistan Journal of Nutrition, 2016
Publication | <1% | | 40 | erepo.unud.ac.id Internet Source | <1% | | 41 | oar.icrisat.org
Internet Source | <1% | 43 Maw Ni Soe Htet, Rab Nawaz Soomro, Haijiang Bo. "Effects of Different Planting Pattern of Maize (<i>Zea mays</i> L.) and Soybean (<i>Glycine max</i> (L.) Merrill) Intercropping in Resource Consumption on Fodder Yield, and Silage Quality", American Journal of Plant Sciences, 2017 <1% Publication S S Malalantang, L Abdullah, P D M H Karti, I G Permana, Nurmahmudi. "Agronomy characteristics of several types of sorghum from radiation mutations as a ruminant animal feed provide", IOP Conference Series: Earth and Environmental Science, 2019 <1% Publication 45 Juliana Silva de Oliveira, Edson Mauro Santos, Ana Paula Maia dos Santos. "Chapter 6 Intake and Digestibility of Silages", IntechOpen, 2016 <1% 46 animalproduction.net Internet Source <1% Exclude quotes Off Exclude bibliography Off