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Dietary modification, including functional foods, could reduce comorbidities

due to obesity. An increase in serum glucose and lipids is often seen in

obesity. Furthermore, obesity is also characterized by a decrease in antioxidant

capacity (i.e., decrease in superoxide dismutase/SOD) and downregulation of

peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). It has

been well established that PGC-1α is important to regulate mitochondrial

biogenesis. Sea grapes (Caulerpa lentillifera) are known as a traditional food

in many Asia-Pacific countries. Recent evidence suggests that sea grapes

have many beneficial properties as functional foods and may have potential

therapeutic functions. We investigated the effect of sea grapes (C. lentillifera)

on serum glucose, lipids, PGC-1α, and protein levels of SOD in the liver of

Rattus norvegicus, which is induced with a high-fat and high-cholesterol

diet. A total of four groups were made, each containing ten male Rattus

norvegicus; group A received a standard dry pellet diet as control, group B

received cholesterol- and fat-enriched diets (CFED), groups C and D received
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GRAPHICAL ABSTRACT

Summarized potential mechanisms by which sea grapes may improve metabolic parameters in obesity-related metabolic disorders.

CFED and 150 and 450 mg/kg body weight (BW) of sea grape extract,

respectively, for 4 weeks. Serum glucose and cholesterol were assessed

using a blood auto-analyzer. Serum PGC-1α was measured using ELISA. SOD

levels were calculated using the superoxide dismutase assay kit by Sigma-

Aldrich with blood taken from liver tissue. In this study, sea grape extracts

improved total cholesterol levels better than the CFED and normal groups.

The efficacy of total cholesterol improvement was similar between the two

doses of sea grape extract. Furthermore, sea grape extract increased PCG-1α

levels, especially with the dose of 150 mg/kg BW. Blood glucose was also

lower in the groups of sea grape extract. Interestingly, the groups treated

with sea grapes extract exhibited higher levels of liver SOD compared to

the normal and CFED groups. To conclude, sea grapes (C. lentillifera) have

promising potential for anti-hyperglycemia and anti-hypercholesterolemia,

and for reducing oxidative stress, and providing various health benefits for

metabolic disorders.

KEYWORDS

Caulerpa lentillifera, functional food, lipid profile, PGC-1α, obesity-related metabolic
disorders, algae, sea grapes

Introduction

Obesity is a major public health problem that leads
to non-communicable diseases such as type 2 diabetes
(T2D) and cardiometabolic syndrome (1). It is not only
a matter of an increase in body fat within adipose tissue

(AT) but more importantly, a decrease in AT function
(2). Adipose tissue dysfunction leads to ectopic fat in
non-AT tissue, such as the skeletal muscle and the
liver (3). More interestingly, fat deposition may cause
impairment in glucose and lipid metabolism in the
liver (4).
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During the development of obesity, oxidative stress can
occur in the liver and may partly be determined by the
disturbance of mitochondrial function. It occurs partly due to
a systematic increase in ROS production and depression of
the antioxidant system (5). Studies have demonstrated that an
increase in oxidative stress may be associated with a decrease
in PGC-1α regulation (6). Importantly, it has been shown that
PGC-1α is a major regulator of mitochondrial function and
biogenesis (7). In a review, an impairment of ROS regulation
within the liver is also associated with the development of non-
alcoholic fatty liver disease (8). Collectively, these impairments
may also lead to the incidence of metabolic syndrome (i.e.,
abnormal glucose levels, lipids, and blood pressure).

Maintaining a healthy lifestyle by being physically active
and having a balanced diet are still recognized as important
to prevent and tackle obesity and metabolic syndrome (9). It
has been suggested that nutritious foods are not only from
agricultural land but also from the ocean. Ocean areas contain
about half of the total global biodiversity, which has many
novel and useful compounds (10). One of these biodiversities
is sea grapes (Caulerpa lentillifera), species in the phylum
Chlorophyta and the family Caulerpaceae. This plant is well
adapted for mass cultivation in open ponds and is well known
for being consumed as a traditional food in many Asia-Pacific
countries, including Indonesia (11).

Current research progress shows sea grapes have
many beneficial properties that may have the potential for
cardiovascular protection and hepatoprotection. Therefore,
sea grapes are currently described not only as a daily food but
also as a plant that can potentially have various therapeutic
functions (12, 13). Sea grapes (C. lentillifera) have been widely
studied for their role in improving lipid profiles, blood sugar,
and cardiovascular and metabolic syndromes. A study by
Preez et al. in Wistar rats fed with a high-carbohydrate and
high-fat diet reported that the rats experienced a decrease in
systolic blood pressure, body weight, plasma concentrations
of total cholesterol, and non-esterified fatty acids, as well as a
reduction in inflammation in liver tissue after being treated
with C. lentillifera supplementation (12). This study provides
insight that cardiometabolic risk factors can be reduced by
supplementation with C. lentillifera, especially its ability to
reduce inflammation and glucose metabolism, which are
the keys to metabolic syndrome. Nguyen et al. reported that
the ethanolic extracts of C. lentillifera have strong hydrogen
peroxide scavenging activity, DPPH radical scavenging

Abbreviations: BW, body weight; CFED, cholesterol- and fat-enriched
diets; CIOMS, Council for International Organizations of Medical
Sciences; DPP-4 enzyme, dipeptidyl peptidase-4; DPPH, 2,2-diphenyl-
1-picrylhydrazyl; FIC, ferric ion reducing; HCL, hydrochloric acid; IL-12,
interleukin-12; IL-1β, interleukin-1 beta; LDL, low-density lipoproteins;
PCG-1α, peroxisome proliferator-activated receptor-gamma coactivator
(PGC)-1 alpha; ROS, reactive oxygen species; SCFAs, short chain fatty
acids; SIRT1, sirtuin-1; SOD, superoxide dismutase; TG, triacylglycerol;
TNF-α, tumor necrosis factor alpha; VLDL, very low-density lipoproteins.

activity, ferric ion-reducing activity, and FIC activity (14).
Moreover, sea grapes also contain various bioactive compounds
such as bioactive peptides, dietary fiber, vitamins, minerals,
polysaccharides, flavonoids, and polyunsaturated fatty acids
(PUFA) (14). High in nutritional value, sea grapes are thought
to be a functional food, especially for individuals with metabolic
diseases such as type 2 diabetes, heart disease, hypertension, and
the older adult population with high oxidative stress levels.

However, studies regarding the effect of C. lentillifera extract
on serum glucose, lipid profile, PGC-1α levels, and oxidative
capacity are still limited. Therefore, this study aims to assess the
effect of sea grape (C. lentillifera) extract on serum glucose, lipid
profile (total cholesterol), PGC-1α levels, and liver SOD levels
in Rattus novergicus rats fed cholesterol-and fat-enriched diets
(CFED) as primary outcomes. A change in the body weight of
rats was reported as a secondary outcome.

Materials and methods

Production of sea grape extract

Fresh sea grapes (Caulerpa lentillifera) were collected
in the shallows (5–10 m above sea level) of the Mantehage
seawater, north of Sulawesi [coordinate google maps
(1.7189753, 124.8034570)], Indonesia. Botanical identification
and authentication were confirmed in the Department of
Pharmacology, Faculty of Mathematics and Natural Sciences,
Sam Ratulangi University, Indonesia. Specimens were collected
for future reference. Sea grapes (whole-body) were thoroughly
rinsed with water, dried at room temperature, baked at 40◦C,
and then ground with an electric grinder. Furthermore, in the
extract preparation, coarse powder (1 kg) is macerated in 96%
ethanol for 72 h, with each extraction carried out in triplicate,
resulting in a yield of 34%. The extract is roughly filtered
using Whatman 41 filter paper. The total filtrate is glued and
evaporated at 40◦C with the RV 8 IKA rotary evaporator under
reduced pressure (100 millibars) for 90 min and evaporated in
an oven at 40◦C to produce the powder extract. The extract is
stored in the refrigerator at a temperature of 4–8◦C before being
used in the experiment.

Animal handling and ethical consent

All experimental rats were kept on standard free-feed and
ad libitum water access. The research was conducted at the
Pharmacology Laboratory, Faculty of Mathematics and Natural
Sciences, Sam Ratulangi University, Manado, Indonesia. From
the Animal Husbandry Laboratory of Makassar, Indonesia, forty
male Wistar albino rats (Rattus norvegicus; 4–5 weeks) weighing
200–250 g each were obtained and transported to the study site.
The minimum number of samples of Wistar albino rats were
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determined using the Federer formula, with the equation = (t –
1) (r – 1) ≥ 15, where t = treatment and r = replication. In this
study, t is 4, then = (4 – 1) (r – 1) ≥ 15; 3(r – 1) ≥ 15; 3r – 3 ≥ 15;
r ≥ 6. So the minimum sample for each group is 6. However,
according to the recent review (15), we chose 10 samples per
group to expect if there are samples that must be excluded.

The animals were grouped, housed in cages, and
kept under standard laboratory conditions (temperature:
27 ± 2◦C), with light and dark cycles (12/12 h). Rats were
acclimatized to laboratory conditions for 10 days before
the start of the experiment. The research protocol (the
use of experimental animals) refers to the Declaration of
Helsinki and the Council for International Organizations
of Medical Sciences (CIOMS). In addition, all experimental
procedures were performed in accordance with the Institutional
Animal Care and Use Committee using the ARRIVE
guidelines, the Ethics Committee of Faculty of Medicine,
Sam Ratulangi University, and have been registered at
Preclinical Trials Europe (www.preclinicaltrials.eu) with
number PCTE0000264.

An animal in vivo study design

Cholesterol- and fat-enriched diets production
Cholesterol- and fat-enriched diets (CFED) are standard

rat foods containing 1% cholic acid, 2% pure cholesterol
powder, 20% fat (animal source/pork oil), and 2% corn oil.
Additional components were added finely to the standard
CFED and homogenized into a dough by the addition of
1,000 ml of distilled water. Small pellets were cut and allowed
to dry at room temperature under sterile conditions. CFED
were prepared weekly and stored at 4◦C until used to reduce
oxidation. CFED consist of carbohydrates (43.57%), crude
protein (12.38%), crude fiber (4.73%), crude fat (3.17%),
cholesterol (2%), cholic acid (1%), animal fat (20%), corn oil
(2%), total ash (4.3%), and moisture content (6.85%). Compared
with a normal diet containing 58.1% carbohydrates, 16.51%
crude protein, and 0% animal fat, all other components, such as
corn oil, cholesterol, and folic acid, did not change significantly.
CFED production guidelines were carried out as previously
described (16).

The scheme of sea grape (Caulerpa lentillifera)
extract administration

Albino male Wistar rats were randomly divided into four
groups of ten each. Group A serves as control (receiving a
standard dry pellet diet). Group B rats were fed CFED only
for 4 weeks. Rats in Groups C and D were fed CFED and
given sea grape extract 150 and 450 mg/kg BW for 4 weeks,
respectively. We determined the doses based on the upper and
lower capacity of the rat’s stomach. CFED and sea grape extract
were administered orally.

Sample collection
Throughout the experiment, every effort was made to

minimize the pain and suffering of the experimental animals.
For this purpose, after 4 weeks of extract treatment, rats were
put in fasting condition overnight and knocked out under an
anesthetic of ketamine. As much as 2.5 ml of blood samples
were collected from cardiac muscle tissue and stored in dry and
clean tubes without the addition of anticoagulants (tiger-top
tubes) to allow coagulation at room temperature. The sample
was then centrifuged for 20 min at 3,000 rpm. Finally, serum
was collected to analyze blood glucose, total cholesterol, and
PGC-1α. Biomedical analysis of blood samples was done as
follows: Blood glucose and cholesterol levels were tested using
the COBAS Integra R© 400 plus analyzer (Roche). The sample
was washed with 1% phosphate-buffered saline (PBS, pH 7.4)
until the liquid was clear. Next, the sample was centrifuged at
3,000 rpm for 20 min to obtain pellets and supernatant. The
supernatant was taken for PGC-1α assay. The concentration
of PGC-1α was measured using a mouse PGC-1α ELISA Kit
(Sunlong Biotech Co., Ltd., Hangzhou, China). SOD levels were
calculated using the superoxide dismutase assay kit by Sigma-
Aldrich with blood taken from liver tissue according to the
product’s procedure kit.

Data management and analysis

The data were statistically analyzed using the
MANOVA/multivariate ANOVA test. The Levene test was
used to determine which post hoc test should be performed.
In cases where the p-value of Levene’s test was < 0.05, the
Games-Howell test (equal variance was not assumed) was used,
and for p-values > 0.05, the Bonferroni test (presumed equal
variance) was used. Statistical analysis was performed using
SPSS 26.0 for the Windows version.

Results

Characteristics of animal models

The characteristics of rats included in this study are shown
in Table 1. Results indicated that CFED rats treated with sea
grape extract exhibited a lower feed efficiency ratio compared
to other groups. Subsequently, rats treated with sea grape extract
yielded lower body weight changes relative to normal and CFED
groups.

Blood glucose

Figure 1 illustrates the blood glucose level of the
experimental rats. CFED rats gained significantly increased
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TABLE 1 Weight characteristics, food and water intake, and feed efficiency ratio between groups of experimental animals.

Groups Body weight before
treatment (g)

Body weight after
treatment (g)

Body weight
change (g/day)

Food Intake
(g)

Water
Intake (ml)

Feed efficiency
ratio (FER, %)

Normal (A) 227.11 ± 15.46 257.53 ± 5.79 1.09 ± 0.64 5.29 ± 0.71 5.70 ± 0.73 21.22 ± 13.09

CFED (B) 227.49 ± 13.35 277.37 ± 7.22 1.78 ± 0.64 5.58 ± 0.40 5.60 ± 0.63 31.88 ± 11.48

CFED + 150 (C) 228.30 ± 12.30 239.70 ± 6.81 0.41 ± 0.34 5.85 ± 0.74 5.84 ± 0.40 7.24 ± 6.58

CFED + 450 (D) 224.62 ± 10.75 246.98 ± 5.63 0.80 ± 0.31 5.84 ± 0.56 5.83 ± 0.39 13.94 ± 6.07

CFED, cholesterol- and carbohydrates fat-enriched diets. Jeanette Irene Christiene Manoppo: JM Fahrul Nurkolis: FN Adriyan Pramono: AP Martha Ardiaria: MA Etisa Adi Murbawani:
EM Muhammad Yusuf: MY Faqrizal Ria Qhabibi: FQ Vincentius Mario Yusuf: VY Nasim Amar: NA Muhammad Rico Abdul Karim: MK Anita Dominique Subali: AS Hans Natanael:
HN Ronald Rompies: RR Rifrita Fransisca Halim: RH Alexander Sam Leonard Bolang: AB Gregory Joey: GJ Christian Agung Novianto: CN Happy Kurnia Permatasari: HP

FIGURE 1

Low doses are more effective in lowering blood glucose.
****Means a strong p-value of < 0.0001.

levels of blood glucose compared to the normal group.
Furthermore, the two groups treated with sea grape extract
showed a significantly lower blood glucose level than CFED rats.
There was no significant difference in blood glucose between the
150 and 450 mg/kg BW sea grape extract groups.

Total cholesterol

Figure 2 shows the total cholesterol level of experimental
rats. CFED rats yielded significantly higher total cholesterol
levels than the standard group. Furthermore, the two groups
treated with sea grape extract showed a significantly lower
total cholesterol level than CFED rats. There was no significant
difference in total cholesterol between the 150 and 450 mg/kg
BW of sea grape extract groups.

PGC-1α

The results of the PGC-1α level are shown in Figure 3. CFED
rats exhibited a lower level of PGC-1a compared to the normal

group. Moreover, the two groups treated with sea grape extract
showed a significantly higher PGC-1α level than CFED rats.
Interestingly, the treatment with 150 mg/kg BW of sea grape
extract showed a higher increment of PGC-1α compared to the
450 mg/kg BW dose.

Liver superoxide dismutase

Figure 4 summarizes the PGC-1α level of the experimental
rats. CFED rats exhibited a lower level of PGC-1a compared to
the normal group. Interestingly, the two groups treated with sea
grape extract showed a significantly higher PGC-1α level than
CFED rats. The liver SOD level was higher with the 450 mg/kg
BW dose of sea grape extract than with the 150 mg/kg BW dose.
This suggests a dose-response manner toward the effect of sea
grapes on liver SOD.

Discussion

The potential of sea grapes (Caulerpa
lentillifera)

Seaweed has the potential to be cultivated as human food
with its ample availability and the promising development of
aquaculture, aside from fisheries (17). C. lentillifera is one
of the green seaweeds that inhabit Southeast Asia and the
Pacific seashore (18). It has a soft texture and palatable taste,
and there are plenty of recipes for C. lentillifera as fresh
vegetables (17). Indo-Pacific countries, such as the Philippines,
Vietnam, and Japan, have cultivated C. lentillifera. Currently,
C. lentillifera is the main product of commercial aquaculture
(19, 20). Not only for its savory, Caulerpa species have
gained popularity due to their availability, nutritional values,
and general awareness as natural products (20). C. lentillifera
contains sufficient dietary fibers, polysaccharides, essential
unsaturated fatty acids, and protein (18). Moreover, recent
research reveals potent beneficial bioactivity from C. lentillifera.
Several studies have demonstrated that C. lentillifera has potent
activity as an antidiabetic by improving insulin sensitivity (21,
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FIGURE 2

Low doses are more effective in lowering total cholesterol.
****Means a strong p-value of < 0.0001.

FIGURE 3

Low doses are more effective in improving the PGC-1a level.
****Means a strong p-value of < 0.0001.

22), regulating blood pressure (23), and exhibiting other health
benefits such as anticancer as well as antimicrobial properties
(24, 25). Thus, the development of C. lentillifera is relevant for
human health since the prevalence of obesity-related disorders
continues to rise.

Safety aspect

Among the other Caulerpa species, C. lentillifera is
considerably safer to consume because it does not accumulate
toxic minerals found in the water it inhabits, such as arsenic,
lead, and mercury (26). However, a recent study has suggested

FIGURE 4

Both doses of sea grapes have a significant effect on liver SOD
activity. ****Means a strong p-value of < 0.0001.

that the potential acidity of pond soil should be taken into
account when cultivating Caulerpa to prevent toxic mineral
accumulation in the water (27).

Antioxidant property

Recently, antioxidant-rich foods have been attractive as
part of healthy lifestyle trends in the protective role to
counter reactive oxygen species (ROS) and other linked
health conditions (28). ROS is remarkable for its ability to
induce oxidative injury in human cells, which may lead to
diverse chronic diseases, such as aging, cancer, and Alzheimer’s
disease. Previous research demonstrated seaweed’s activity as a
strong antioxidant to protect itself from ROS. The antioxidant
properties are related to some phytochemical compounds, such
as phenolics and flavonoids. These substrates have hydroxyl
groups, which can donate hydrogen to stabilize free radicals
and terminate new free radical generation (29). Oxidative stress
has been suggested to link with obesity and induces metabolic
syndrome (6).

Possible mechanisms to alter the
metabolic profile in metabolic
syndrome

Recent research by Preez et al. on rats with a high-
carbohydrate and high-fat (HCHF) diet exhibited C. lentillifera’s
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supplementation ability for improving cardiometabolic
risk factors. The study showed that feeding rats with
such a diet established hypertension, dyslipidemia, fatty
liver disease, obesity, and increased collagen deposition
inside the left ventricle (12). C. lentillifera-augmented diet
in HCL rats displayed positive effects by reducing some
parameters, such as body weight, systolic blood pressure,
plasma concentrations of total cholesterol and non-esterified
fatty acids, heart and liver inflammatory cells, and visceral
adiposity (12).

Another study also displayed a potential modulation in
the gut microbiota by C. lentillifera. Supplementation of
C. lentillifera decreased the Firmicutes to Bacteroidetes ratio.
Some possible mechanisms explain green algae’s health benefits,
such as prebiotic effects due to their high fiber content. In
Caulerpa species, sulfated polysaccharides have complex and
heterogeneous repetitive sugar unit structures. Polysaccharides
of Caulerpa sp. are digested minimally in the stomach
but will be further fermented by bacteria residing in the
colon as prebiotics (30). It has been shown that prebiotics
from the ocean biodiversities gives impacts on metabolic
health, such as reducing body weight and blood pressure
(31). Another study on diet-induced obesity discovered that
inulin and oligofructose-mixed prebiotic is an effective dietary
fiber to reduce body weight gain, systolic blood pressure,
plasma concentrations of triglycerides, and free fatty acids and
attenuate inflammatory cells to infiltrate the heart and the
liver (32).

The insoluble fiber in C. lentillifera is proposed to be linked
with enhanced short-chain fatty acids (SCFAs) production
inside the colon, such as butyric, propionic, and acetic acids
(33). Most of them are insoluble fibers, which are not
converted into energy and enhance satiety (34). Escalating
soluble fiber intake with inulin and oligofructose has exhibited
improved metabolic syndrome signs by abating gastrointestinal
uptake of carbohydrates and lipids (33). Polysaccharides from
ocean biodiversities work with diverse mechanisms through
selective fermentation, gut pH lowering, fecal bulking, gut
pathogen colonization prevention, and putrefactive bacterial
control. As a result, they can protect the host from toxic
metabolite exposure (35). These outcomes may be related
to the activity of dietary fiber to increase SCFA production,
providing energy to the host (36). Unfortunately, in our
in vivo model, we were unable to analyze the gut microbiota
composition and SCFAs. Therefore, it could be recognized as a
limitation of our study.

Since obesity and metabolic syndrome are often
characterized by chronic low-grade inflammation (1),
reducing the proinflammatory state is vital to preventing
other metabolic disorders. One possible strategy is by
consuming food that contains compounds with anti-
inflammatory activity. This functional type may help
to reduce systemic chronic low-grade inflammation in

obesity (37). Polysaccharides of C. lentillifera can enhance
immunostimulatory and anti-inflammatory activity (38),
which may improve antioxidant capacity (i.e., increases SOD
capacity) in the liver.

This experimental study reported that two groups of rats
with the intervention of sea grape extract (150 and 450 mg/kg
BW) had significantly lower blood glucose levels than the
CFED rat group (Figure 1). This result is in line with the
studies by Permatasari et al. (16) and Kuswari et al. (39), which
also showed a significant decrease in blood glucose levels in
CFED rats after being treated with sea grape extract. CFED
feed in rats can significantly increase blood glucose levels and
lipid profiles. We also found a significant decrease in total
cholesterol levels in the group of rats given CFED + sea grape
extract compared to CFED-only rats (Figure 2). However, the
results of lipid profile and blood glucose level improvements
between 2 groups of rats with sea grape extract doses of
150 and 450 mg/kg BW showed no significant difference.
Interestingly, study results found no significant difference in
total cholesterol between the high dose and low dose group;
this might be due to palmitate acid, which dominates fatty
acid composition in sea grapes, being able to raise total
cholesterol levels in the blood (40). In contrast, the group of
rats treated with the sea grapes had higher levels of PGC-1
alpha than the group of CFED rats (Figure 3). An increase
in PGC-1 alpha is essential for the regulation of cellular
energy metabolism (Graphical abstract). In addition, PGC-1
alpha is also expressed in tissues with high energy demand
and is strongly associated with the occurrence of metabolic
syndrome. Interestingly, this study reported that the group of
rats treated with a dose of 150 mg/kg BW sea grapes had
higher levels of PGC-1 alpha compared to a dose of 450 mg/kg
BW. Furthermore, it was found that the effect of sea grapes
on liver SOD levels was dose-dependent; the higher the dose,
the higher the liver SOD levels (Figure 4). There was no
significant difference in body weight between all groups of
rats.

C. lentillifera contains various bioactive molecules that
can contribute to its anti-hyperglycemic activity, including
sulfated polysaccharides and monosaccharides. A previous
study by Fajriah et al. showed that purified polysaccharides
of C. lentillifera had significant inhibition capability against
α-glucosidase (41). A-glucosidase is an enzyme located in
the brush borders of the small intestine, which operates by
cleaving disaccharides into glucose to be further absorbed
(42). Inhibiting α-glucosidase can delay glucose uptake and
reduce sugar circulating in the bloodstream. This proposed
mechanism is similar to present oral antidiabetic drugs
for type 2 diabetes, such as acarbose and miglitol, used
in clinical practice (43). In addition, a study by Sharma
et al. showed that C. lentillifera extract significantly increased
insulin secretion, glucose transporter expression, and enhanced
glucose uptake in adipocyte cells in vitro (22). Furthermore,
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in a study, C. lentillifera also significantly decreased the
DPP-4 enzyme, which increased circulating incretin levels,
leading to increased insulin release and improved glycemic
control (21).

This study showed that the administration of C. lentillifera
resulted in a significant reduction in cholesterol (Graphical
abstract). A possible mechanism is that C. lentillifera contains
caulerpenyne, a major metabolite of the Caulerpa genus in
the form of sesquiterpenoids that are shown to inhibit lipase
activity in vivo competitively (44). Moreover, this lipase-
inhibitory activity of C. lentillifera might also be attributed to
its high phenolic content, especially flavonoids (29, 45, 46).
Inhibition of lipase causes reduced lipolysis of dietary fats
entering the digestive tract, decreasing the amount of fatty
acid taken into the bloodstream, which eventually reduces the
formation of LDL, VLDL, and TAG, the main components
of total cholesterol in the liver. An increased level of SOD
(potentially reduced oxidative stress) in the liver may also
partly contribute to improving liver lipid metabolism (8). The
mentioned mechanism may also cause a decrease in post-
intervention body weight of experimental animals due to less
ectopic fat (4).

Next, systemic PGC-1α, the most well-known and studied
member of transcriptional coactivators called the PGC-1 family,
has increased significantly after C. lentillifera administration.
PGC-1α influences most cellular metabolic pathways and
plays an essential role in mitochondrial biogenesis, especially
in detoxifying reactive oxygen species by regulating the
expression of ROS-detoxifying enzymes (6). The PGC-1α

activation pathways can upregulate the expression of Sirtuin
1 (SIRT1), antioxidants, including glutathione peroxidase and
SOD, which may be further demonstrated in this study as
liver SOD increased significantly in rats post-intervention (47).
Antioxidants are crucial to scavenge ROS in metabolic disorders
since excess ROS are involved in insulin signal dysregulation,
insulin resistance, overfeeding, saturated fatty acids, and chronic
inflammation (48). Deregulation and decrease in the PGC-1α

expression itself have also been linked strongly to trigger various
metabolic disorders, including obesity, cardiovascular diseases,
and NAFLD that cause various inflammatory processes with
dysfunctional redox control; therefore, PGC-1α modulation
is significant to provide clinical metabolic benefits (47, 48)
potentially. Summarized mechanisms of C. lentillifera can be
seen in Graphical abstract.

In general, C. lentillifera has promising potential as
a prospective nutraceutical for patients with obesity-
induced metabolic disorders, including the improvement
of hyperglycemia in diabetic patients, the suppression of
hyperlipidemia, hypercholesterolemia, and the reduction
in weight in patients with obesity. The increase in PGC-
1α also contributes to various and vast positive impacts
on oxidative metabolism, which can benefit patients with
metabolic disorders.

Conclusion

Sea grape (C. lentillifera) extract showed potential
efficacy as nutraceuticals in improving blood glucose,
total cholesterol, PGC-1α, and liver SOD levels in rats
that were fed CFED. Providing a dose of 150 mg/kg of
BW effectively lowers blood glucose and total cholesterol
by increasing PGC-1α levels. The dose obtained from
preclinical trials could be a reference for future clinical
trials in humans.
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