LAPORAN AKHIR TAHUN

PENELITIAN DASAR UNGGULAN PERGURUAN TINGGI

ANALISIS KARAKTERISTIK MAGNETIK, MINERALOGI, DAN GRANULOMETRI ENDAPAN PIROKLASTIK UNTUK MENENTUKAN PROSES PALEOVULKANIK

Tahun ke-1 dari rencana 2 tahun

Tim Pengusul

Ketua	: Dr. Gerald Hendrik Tamuntuan, S.Si., M.Si.	NIDN: 0006057102
Anggota I	: Dr. Hanny Frans Sangian, S.Pd., M.Si.	NIDN: 0022106902
Anggota II	: Guntur Pasau, S.Si., M.Si.	NIDN: 0020017006

UNIVERSITAS SAM RATULANGI

NOVEMBER 2018

Dibiayai Oleh Direktorat Riset dan Pengabdian Masyarakat Dirjen Penguatan Riset dan Pengembangan Kemenristekdikti Sesuai dengan Kontrak Penelitian Tahun Anggaran 2018

HALAMAN PENGESAHAN

: Analisis Karakteristik Magnetik, Mineralogi, dan

Judul

	Granulometri Endapan Piroklastik untuk Menentukan Proses Paleovulkanik
Peneliti/Pelaksana	
Nama Lengkap	: Dr GERALD HENDRIK TAMUNTUAN, S.Si, M.Si
Perguruan Tinggi	: Universitas Sam Ratulangi
NIDN	: 0006057102
Jabatan Fungsional	: Lektor Kepala
Program Studi	: Fisika
Nomor HP	: 08124450886
Alamat surel (e-mail)	: gtamuntuan@gmail.com
Anggota (1)	
Nama Lengkap	: Dr HANNY FRANS SANGIAN S.Pd, M.Si
NIDN	: 0022106902
Perguruan Tinggi	: Universitas Sam Ratulangi
Anggota (2)	
Nama Lengkap	: GUNTUR PASAU S.Si, M.Si
NIDN	: 0020017006
Perguruan Tinggi	: Universitas Sam Ratulangi
Institusi Mitra (jika ada)	
Nama Institusi Mitra	:-
Alamat	:-
Penanggung Jawab	:-
Tahun Pelaksanaan	: Tahun ke 1 dari rencana 2 tahun
Biaya Tahun Berjalan	: Rp 87,850,000
Biaya Keseluruhan	: Rp 221,700,000

Mengetahui, Dekan FMIPA Univ. Sam Ratulangi

(Prof. Dr. Benny Pinontoan, M.Sc.) NIP/NIK 196606041995121001 Kota Manado, 12 - 11 - 2018

Ketna.

(Dr GERALD HENDRIK TAMUNTUAN, S.Si, M.Si) NIP/NIK 197105062000031001

Menyetujui, Ketua LPPM Univ. Sam Ratulangi

(Prof. Dr. Ir. Charles L. Kaunang, MS) NIP/NIK 195910181986031002

U

i

RINGKASAN

Sulawesi Utara merupakan salah satu daerah vulkanik aktif yang berada pada jalur cincin api (ring of fire). Di daerah ini banyak terdapat endapan piroklastik yaitu endapan material hasil letusan gunung api yang terbentuk dari jatuhan ataupun aliran material setengah padat berkonsentrasi tinggi di atas permukaan tanah. Sifat fisis, mineralogi, ukuran bulir, dan morfologi dari material piroklastik sangat ditentukan oleh sumber serta proses/mekanisme erupsi. Dalam survey awal pada beberapa lokasi, ditemukan endapan piroklastik terstratifikasi yang dapat digunakan untuk mengungkap proses vulkanisme daerah ini dimasa lalu (paleovulkanik). Hingga saat ini, hampir tidak ditemukan kajian tentang proses dan mekanisme paleovulkanik di Sulawesi Utara dengan memanfaatkan endapan piroklastik. Oleh karena itu telah dilakukan kajian terhadap endapan piroklastik dengan menggunakan metode magnetik, spektroskopi sinar X serta analisis granulometri. Kajian dilakukan pada situs endapan piroklastik di daerah Tanjung Merah (TM), Sulawesi Utara yang memiliki 10 lapisan endapan. Hasil yang diperoleh menunjukkan bahwa endapan pada setiap lapisan didominasi oleh bulir-bulir yang relatif besar (coarse). Suseptibilitas magnetik endapan piroklastik TM memiliki nilai bervariasi antara $247,44 \times$ 10^{-8} m³kg⁻¹ – 1615,6 × 10^{-8} m³kg⁻¹. Suseptibilitas magnetik bergantung frekwensi menunjukkan bahwa 50% sampel mengandung bulir-bulir superparamagnetik. Bulir-bulir mineral magnetik pada sampel secara umum memiliki domain state pseudosingle-domain (PSD). Hasil analisis data XRF menunjukkan endapan piroklastik di daerah TM bersumber dari batuan andesite dengan kadar K dari rendah ke sedang. Salah satu hal penting yang menjadi temuan dalam penelitian ini adalah indikator ukuran bulir relatif berdasarkan hubungan trigonal oksida-oksida utama. Berdasarkan hasil-hasil yang telah diperoleh, maka saat ini sedang dilakukan penyusunan artikel untuk publikasi internasional di jurnal Geosciences MDPI.

Kata kunci: Sifat magnetik, endapan piroklastik, granulometri, Sulawesi Utara

PRAKATA

Puji syukur kepada Tuhan Yang Maha Kuasa karena atas kemurahanNya sehingga penelitian kami sepanjang tahun 2018 boleh berjalan dengan baik. Penelitian ini telah menghasilkan informasi tentang distribusi ukuran bulir serta sifat magnetik dan mineralogi pada endapan piroklastik di daerah Tanjung Merah, Sulawesi Utara. Kami berterima kasih kepada Direktorat Riset dan Pengabdian Masyarakat (DRPM) Dikti yang telah membiayai penelitian ini dengan skim Riset Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT) tahun 2018. Masukan yang konstruktif akan diterima dengan senang hati untuk penyempurnaan hasil-hasil yang kami peroleh. Akhir kata, kiranya hasil penelitian ini boleh melengkapi wawasan tentang proses atau mekanisme paleovulkanik termasuk kegempaan vulkanik disuatu daerah. Pemahaman yang baik tentang paleovulkanism akan berimplikasi pada pengenalan pola dan karakteristik erupsi gunung api yang dapat memicu bencana pada suatu daerah.

Manado, November 2018

Peneliti

DAFTAR ISI

Halaman Pengesahan	i
RINGKASAN	ii
PRAKATA	iii
DAFTAR ISI	iv
DAFTAR TABEL	
DAFTAR GAMBAR	
BAB I PENDAHULUAN	1
BAB II TINJAUAN PUSTAKA	3
II.1. Proses Vulkanik dan Endapan Piroklastik	3
II.2. Metode Kemagnetan Batuan dalam Kajian Material Interior Bumi dan	4
Peta Jalan Penelitian	
BAB III TUJUAN DAN MANFAAT	8
BAB IV METODE PENELITIAN	10
BAB V HASIL DAN LUARAN YANG DICAPAI	12
V.1. Fraksi Ukuran Bulir	12
V.2. Suseptibilitas Magnetik	12
V.3. Magnetisasi Remanen Ishotermal	14
V.3. Pengukuran Histeresis Magnetik	14
V.4. Pengukuran XRF	16
V.5. Luaran Yang Telah Dicapai	18
BAB VI RENCANA TAHAP BERIKUTNYA	19
BAB VII KESIMPULAN	20
DAFTAR PUSTAKA	21

DAFTAR TABEL

Tabel 1	Persentase berat untuk empat kategori ukuran bulir	

DAFTAR GAMBAR

Gambar 1	Situs endapan piroklastik yang terdapat di daerah Tanjung Merah Sulawesi Utara.			
Gambar 2	Peta jalan penelitian hingga tahun 2025.			
Gambar 3	Variasi nilai suseptibilitas pada 10 lapisan endapan piroklastik di daerah Tanjum Merah.	13		
Gambar 4	Perbandingan nilai suseptibilitas magnetik bergantung frekwensi dengan nilai suseptibilitas magnetik.	13		
Gambar 5	Akusisi IRM sampel-sampel dari TM, CL, dan LS menunjukkan medan DC yang tersaturasi di bawah 300 mT	14		
Gambar 6	Kurva histeresis magnetik sampel TM-1.	15		
Gambar 7	Diagram Day sampel-sampel TM.	15		
Gambar 8	Pengkategorian sumber dari setiap lapisan endapan piroklastik. Kotak berwarna biru adalah sampel-sampel TM sedangkan yang lain adalah sampel pembanding. Dari hasil tersebut terlihat bahwa sumber endapan piroklastik di lokasi TM adalah batuan vulkanik andesite.	16		
Gambar 9	Perbandingan K ₂ O terhadap SiO ₂ .	17		
Gambar 10	Hubungan antara suseptibilitas magnetik dengan beberapa oksida utama dalam endapan piroklastik	17		

BAB I. PENDAHULUAN

Sulawesi Utara merupakan salah satu daerah dengan masalah geodinamika yang kompleks. Selain memiliki beberapa persesaran, dikelilingi oleh zona subduksi di Laut Sulawesi dan Laut Maluku, daerah ini juga dihuni oleh beberapa gunung api aktif sehingga relatif rawan terhadap gempa bumi dan bencana yang diakibatkan oleh proses vulkanik. Salah satu tanda kejadian erupsi vulkanik adalah keberadaan jatuhan material piroklastik (Cioni dkk, 2003). Material piroklastik yang terendapkan pada sebagian besar wilayah Sulawesi Utara relatif tebal dan membentuk perlapisan yang merepresentasikan episode dan karakteristik erupsi dari waktu ke waktu. Hal ini tentunya membuka peluang untuk memahami proses vulkanik dimasa lalu (paleovulkanik) dari waktu ke waktu karena karakteristik dari material piroklastik yang terendapkan ternyata berhubungan erat dengan intensitas dan magnitudo letusan/erupsi vulkanik (Bellotti dkk, 2010) yang juga berimplikasi pada kegempaan yang dihasilkan. Pemahaman yang baik tentang paleovulkanism akan berimplikasi pada suatu daerah (Siebe dkk, 1995).

Endapan piroklastik merupakan salah satu objek yang potensial untuk kajian paleovulkanik (Jessop dkk, 2016; Pal dkk, 2010). Endapan ini terbentuk sebagai deposisi hasil letusan gunung api berupa pecahan-pecahan batuan dengan berbagai ukuran bulir (granulometri), mineralogi, serta morfologi yang berbeda. Batuan yang dierupsikan (dalam bentuk fragmentasi) pada dasarnya terbentuk sebagai hasil pendinginan magma. Selama proses pembentukkannya dari magma, terjadi penumbuhan mineral-mineral magnetik dengan karakteristik berbeda dalam suatu batuan dipengaruhi oleh lokasi terbentuknya dalam *vent* gunung api. Saat terjadi erupsi, kondisi suhu dan ekspansi gas dapat mempengaruhi morfologi dan ukuran bulir dari material piroklastik yang dilontarkan. Hal-hal tersebut dapat menjadi penanda dalam menganalisis proses ataupun mekanisme paleovulkanik.

Kajian terhadap sifat-sifat magnetik endapan piroklastik di Sulawesi Utara hingga saat ini belum pernah dilakukan. Padahal pemahaman tentang karakteristik sifat magnetik yang didukung dengan analisis mineralogi dan granulometri dapat menjadi cara yang sangat potensial untuk mengungkap proses/mekanisme paleovulkanik di Sulawesi Utara. Lebih jauh bahwa hingga saat ini belum diketahui bagaimana hubungan trigonal antara sifat magnetik - mineralogi/komposisi kimia - granulometri dari endapan piroklastik. Oleh karena itu perlu dilakukan karakterisasi sifat-sifat magnetik, mineralogi, dan granulometri

dari endapan piroklastik. Penelitian ini nantinya akan memperkaya wawasan dan memberi kontribusi keilmuan yang signifikan tentang bagaimana sifat-sifat magnetik pada endapan piroklastik, bagaimana hubungannya dengan mineralogi dan granulometri endapan piroklastik, pemanfaatannya dalam mengungkap proses paleovulkanik serta meletakkan dasar untuk kajian-kajian selanjutnya dalam mitigasi bencana geologis yang diakibatkan oleh letusan gunung api. Hal ini sejalan dengan topik riset unggulan Universitas Sam Ratulangi (UNSRAT) yang dituangkan dalam Rencana Induk Penelitian (RIP) UNSRAT 2016 – 2020 dimana salah satu peta jalannya menitikberatkan pada bidang penanggulangan kebencanaan dan lingkungan.

BAB II. TINJAUAN PUSTAKA

II.1. Proses Vulkanik dan Endapan Piroklastik

Proses vulkanik secara sederhana didefinisikan sebagai aktivitas berupa erupsi ataupun non erupsi yang terjadi pada suatu gunung api. Berdasarkan tinggi rendahnya derajat fragmentasi dan luasnya, kuat lemahnya letusan serta tinggi tiang asap, maka erupsi gunung api dibagi menjadi beberapa tipe:

- Tipe Hawaiian, yaitu erupsi eksplosif dari magma basaltic atau mendekati basalt, umumnya berupa semburan lava pijar, dan sering diikuti leleran lava secara simultan, terjadi pada celah atau kepundan sederhana;
- Tipe Strombolian, erupsinya hampir sama dengan Hawaiian berupa semburan lava pijar dari magma yang dangkal, umumnya terjadi pada gunungapi sering aktif di tepi benua atau di tengah benua;
- Tipe Plinian, merupakan erupsi yang sangat ekslposif dari magma berviskositas tinggi atau magma asam, komposisi magma bersifat andesitik sampai riolitik. Material yang dierupsikan berupa batuapung dalam jumlah besar;
- Tipe Sub Plinian, erupsi eksplosif dari magma asam/riolitik dari gunungapi strato, tahap erupsi efusifnya menghasilkan kubah lava riolitik. Erupsi subplinian dapat menghasilkan pembentukan ignimbrit;
- 5) Tipe Ultra Plinian, erupsi sangat eksplosif menghasilkan endapan batuapung lebih banyak dan luas dari Plinian biasa;
- 6) Tipe Vulkanian, erupsi magmatis berkomposisi andesit basaltic sampai dasit, umumnya melontarkan bom-bom vulkanik atau bongkahan di sekitar kawah dan sering disertai bom kerak-roti atau permukaannya retak-retak. Material yang dierupsikan tidak melulu berasal dari magma tetapi bercampur dengan batuan samping berupa litik;
- 7) Tipe Surtseyan dan Tipe Freatoplinian, kedua tipe tersebut merupakan erupsi yang terjadi pada pulau gunungapi, gunungapi bawah laut atau gunungapi yang berdanau kawah. Surtseyan merupakan erupsi interaksi antara magma basaltic dengan air permukaan atau bawah permukaan, letusannya disebut freatomagmatik. Freatoplinian kejadiannya sama dengan Surtseyan, tetapi magma yang berinteraksi dengan air berkomposisi riolitik.

Secara umum produk dari erupsi gunung api terdiri atas gas vulkanik, aliran lava, dan vulkanoklastik. Vulkanoklastik adalah seluruh material lepas yang dibentuk oleh proses fragmentasi, dihamburkan oleh berbagai macam agen transportasi, diendapkan pada berbagai lingkungan atau tercampur dengan fragmen non volkanik, salah satu contohnya dalam hal ini adalah material piroklastik. Material ini saat dierupsikan gunung api memiliki sifat fragmental, dapat berujud cair maupun padat, memiliki ukuran material berkisar dari abu halus (< 1/16 mm) hingga blok dengan panjang beberapa meter, dan saat terendapkan disebut sebagai endapan piroklastik (Sigurdsson dkk, 2000). Batuan yang terfragmentasi serta materi cair yang kemudian memadat karena pengaruh suhu akan memiliki karakteristik/sifat magnetik yang berbeda bergantung pada sumber batuan didalam bumi dan proses vulkanik yang berlaku saat itu. Gambar 1 menunjukkan salah satu contoh lokasi yang memiliki endapan piroklastik berlapis di daerah Sulawesi Utara.

Gambar 1. Situs endapan piroklastik yang terdapat di daerah Tanjung Merah Sulawesi Utara.

II.2. Metode Kemagnetan Batuan dalam Kajian Material Interior Bumi dan Peta Jalan Penelitian

Metode kemagnetan batuan (rock magnetism) adalah suatu metode yang mempelajari sifatsifat magnetik dari batuan, tanah, dan sedimen dimana hasil-hasilnya dapat digunakan untuk mengetahui berbagai proses yang telah terjadi di bumi. Sifat-sifat magnetik muncul saat terbentuknya mineral-mineral pembawa sifat magnetik dari reaksi-reaksi kimia yang terjadi pada magma yang mendingin menjadi batuan. Sifat dari mineral-mineral tersebut menjadi jelas ketika temperatur batuan berada di bawah batas kritis *blocking temperature* yang biasa disebut dengan temperatur Curie. Pada saat itu, momen-momen magnetik pada mineral pembawa sifat magnetik mengalami proses penjajaran dan berubah dari *state* paramagnetik yang memiliki sifat magnetik lemah menjadi ferro- atau ferrimagnetik yang memiliki sifat magnetik lemah menjadi ferro- atau ferrimagnetik yang memiliki sifat magnetik bergantung pada mekanisme serta kondisi lingkungan ketika proses perubahan tersebut berlangsung. Perubahan karakteristik dasar dari mineral magnetik tersebut berimplikasi pada perubahan sifat magnetiknya.

Pemanfaatan fenomena magnetik dalam kajian material interior bumi mulai dilakukan pada batuan sejak tahun 1938 oleh Koenigsberger dan Thellier serta Nagata pada tahun 1943 tinggi (Dunlop dan Özdemir, 1997). Mereka melakukan kajian tentang pengaruh suhu terhadap magnetisasi pada batuan yang kemudian saat ini dikenal dengan nama proses TRM atau *termoremanent magnetization* (Gubbins dan Herrero-Bervera, 2007). Ditempat terpisah, kajian tentang sifat-sifat magnetik pada sedimen danau juga sudah dimulai sejak tahun 1926 oleh Gustav Ising (Bradley dan Heller, 1999). Ising memperkirakan bahwa variasi sifat magnetik pada perlapisan sedimen terjadi sebagai akibat perubahan respons hidrologi terhadap kondisi iklim. Hingga saat ini sudah begitu banyak kajian tentang sifat-sifat magnetik batuan, tanah, maupun sedimen yang digunakan untuk mengungkap berbagai proses di bumi baik yang terjadi pada masa kini maupun masa lalu. Kajian-kajian tersebut menunjukkan bahwa perubahan sifat magnetik terkait erat dengan perubahan karakteristik mineral magnetik dalam hal ini mineralogi, ukuran bulir, domain magnetik, dan konsentrasi mineral magnetik (Tamuntuan dkk, 2015).

Berbeda dengan kajian sifat-sifat magnetik pada batuan, tanah, dan sedimen yang sudah relatif banyak dilakukan, maka kajian sifat-sifat magnetik pada material piroklastik jatuhan hingga saat ini terbilang masih sangat sedikit. Kajian terkait material piroklastik jatuhan masih terbatas pada debu vulkanik atau tephra seperti yang dilakukan oleh Passier dkk (2001), Lagroix dkk (2004), dan Viglioti (2014). Hal tersebut menjadikan material piroklastik jatuhan yang terendapkan, dalam hal ini memiliki ukuran bulir relatif heterogen, sebagai objek potensial untuk mengetahui proses vulkanik. Oleh karena itu, melalui

penelitian yang diusulkan dalam skim Hibah fundamental ini peneliti hendak melakukan kajian secara mendalam tentang sifat-sifat magnetik, mineralogi, dan granulometri endapan piroklastik yang ada pada beberapa lokasi di Sulawesi Utara untuk menentukan proses paleovulkanik di daerah tersebut. Kedepan hasil-hasil ini dapat digunakan sebagai dasar dari penelitian lanjutan untuk menentukan proses-proses vulkanik secara lebih akurat.

Terkait penelitian yang diusulkan, Ketua peneliti sudah sangat familiar dengan metodemetode yang akan digunakan. Beberapa kajian berupa pemanfaatan metode kemagnetan batuan (*rock magnetism*) telah dilakukan oleh ketua peneliti pada berbagai objek alamiah seperti batuan, sedimen, serta tanah dan telah dipublikasikan baik dalam bentuk seminar internasional dan nasional maupun naskah pada jurnal ilmiah internasional berindeks (lihat lampiran 4). Sementara anggota tim peneliti juga memiliki dasar fisika kebumian yang kuat dan memiliki kompeten dalam bidang geodinamika dan kegempaan. Kompetensi dari anggota peneliti diperlihatkan dengan keterlibatannya dalam beberapa penelitian yang telah dikerjakan dan publikasi hasil penelitian pada jurnal ilmiah (lihat lampiran 4).

Penelitian ini merupakan kajian dasar/fundamental yang dilakukan secara eksperimen laboratorium terhadap sifat/karakteristik fisis (sifat magnetik dan granulometri) serta mineralogi dari endapan piroklastik. Posisi kajian ini merupakan tahap inisiasi dari suatu rencana jangka panjang penelitian tentang pemanfaatan sifat-sifat magnetik sebagai salah satu metode yang potensial dalam menentukan proses-proses paleovulkanik. Peta jalan (*road map*) dari rencana penelitian jangka panjang tersebut serta posisi dari penelitian yang diusulkan dapat dilihat pada Gambar 2.

Gambar 2. Peta jalan penelitian hingga tahun 2025.

BAB III. TUJUAN DAN MANFAAT

III.1. Tujuan Penelitian

Secara umum penelitian ini bertujuan untuk menentukan karakteristik sifat-sifat magnetik, mineralogi, dan granulometri dari endapan piroklastik di Sulawesi Utara dalam mengungkap proses atau mekanisme paleovulkanik didaerah tersebut. Hal-hal khusus yang ingin diperoleh dan menjadi target utama dalam penelitian ini adalah menentukan:

- Sifat-sifat magnetik, mineralogi, dan morfologi dari endapan piroklastik pada ukuran bulir (granulometri) yang berbeda dan dituangkan dalam bentuk hubungan trigonal antara sifat-sifat magnetik - komposisi kimia - ukuran bulir,
- (2) Variasi sifat magnetik dan mineralogi, termasuk didalamnya komposisi geokimia dan morfologi, pada endapan piroklastik terstratifikasi yang ada di Sulawesi Utara untuk menentukan proses atau mekanisme paleovulkanik di daerah tersebut.

III.2. Manfaat Penelitian

Sulawesi Utara merupakan salah satu daerah yang berada pada jalur cincin api (*ring of fire*) dan memiliki beberapa gunung api aktif yang berpotensi bencana. Keberadaan endapan piroklastik dan tufa yang relatif tebal pada sebagian besar daerah ini menunjukkan tingginya aktivitas vulkanik dimasa lalu. Oleh karena itu merupakan hal yang bermanfaat untuk mengkaji proses erupsi atau letusan gunung api dimasa lalu (paleovulkanik) dalam rangka memahami pola aktivitas vulkanik daerah Sulawesi Utara. Salah satu cara untuk mengkaji hal tersebut adalah dengan melakukan karakterisasi sifat-sifat magnetik, mineralogi, dan granulometri pada endapan piroklastik. Kajian seperti ini belum pernah dilakukan, secara khusus pada endapan piroklastik di Sulawesi Utara. Bahkan hal baru yang akan dilakukan dan memiliki kontribusi yang sangat signifikan terhadap perkembangan bidang ilmu fisika, secara khusus fisika kebumian (geofisika) adalah diketahuinya hubungan trigonal antara sifat-sifat magnetik - mineralogi/komposisi kimia granulometri pada endapan piroklastik. Hubungan trigonal tersebut akan berimplikasi pada semakin sederhana/pendeknya tahapan analisis (karena dua parameter/kondisi dapat menjelaskan tiga kondisi/keadaan) ketika melakukan kajian serupa pada objek yang serupa. Sementara analisis terpadu terhadap variasi sifat magnetik, mineralogi, komposisi kimia serta morfologi pada setiap lapisan endapan piroklastik diharapkan dapat digunakan untuk menentukan proses atau mekanisme paleovulkanik termasuk kegempaan vulkanik disuatu

daerah. Pemahaman yang baik tentang paleovulkanism akan berimplikasi pada pengenalan pola dan karakteristik erupsi gunung api yang dapat memicu bencana pada suatu daerah. Keterbaruan dalam penelitian ini akan dipublikasikan pada jurnal internasional bereputasi.

BAB IV. METODE PENELITIAN

Penelitian ini menggunakan sampel berupa endapan piroklastik yang diperoleh dari 5 (lima) lokasi atau situs berbeda di Sulawesi Utara. Pengambilan sampel dilakukan pada beberapa titik dipermukaan serta pada setiap lapisan atau *layer* berbeda untuk setiap situs endapan piroklastik. Sampel-sampel yang diperoleh selanjutnya disimpan dalam holder-holder plastik untuk dipreparasi lebih lanjut.

Penelitian pada Tahun I (2018) secara umum ingin melihat sifat-sifat magnetik serta morfologi dan komposisi geokimia pada granulometri berbeda dari suatu endapan piroklastik. Oleh karena itu tahap pertama yang dilakukan adalah analisis granulometri. Secara umum hal-hal yang dilakukan pada tahap ini adalah mengeringkan sampel-sampel hingga memiliki kadar air yang relatif sama, memisahkan ukuran bulir endapan piroklastik melalui pengayakan pada empat ukuran mesh yang berbeda, dan menentukan fraksi ukuran bulir. Tahap berikut yang akan dilakukan adalah mengkarakterisasi sampel-sampel pada setiap ukuran bulir berbeda tersebut dengan metode magnetik serta melakukan observasi komposisi dengan menggunakan *X-Ray Fluorescene* (XRF). Secara umum pengukuran-pengukuran yang akan dilakukan untuk proses karakterisasi tersebut adalah sebagai berikut:

- Pengukuran suseptibilitas magnetik

Suseptibilitas magnetik diukur menggunakan Bartington Suseptibility Meter dengan sensor 2B. Pengukuran dilakukan pada dua frekwensi berbeda yaitu 470 Hz dan 4700 Hz untuk memperoleh parameter suseptibilitas magnetik frekwensi rendah (χ_{LF}) dan suseptibilitas magnetik frekwensi tinggi (χ_{HF}) serta parameter suseptibilitas bergantung frekwensi atau *frequency dependent susceptibility* (χ_{FD}). χ_{FD} dalam penelitian ini digunakan untuk mengindikasikan konsentrasi bulir superparamagnetik dalam sampel.

- Pengukuran isothermal remanent magnetization (IRM)

Pengukuran IRM dilakukan dengan cara memberikan induksi medan searah (DC) secara bertahap kepada sampel hingga mencapai 1 T. Hal ini dilakukan untuk mengidentifikasi pada medan DC berapa magnetisasi pada suatu sampel mulai tersaturasi. Medan saturasi digunakan untuk menentukan mineral magnetik yang dominan dalam sampel.

- Pengukuran kurva histeresis magnetik

Pengukuran dalam hal ini akan dilakukan dengan alat vibrating sample magnetometer (VSM) yang berada di Pusat Studi Teknologi Bahan dan Mineral BATAN Serpong. Pengukuran ini prinsipnya untuk melihat perubahan magnetisasi terhadap efek medan yang kemudian dapat menghasilkan empat parameter histeresis magnetik yaitu Magnetik Saturasi (M_s), Magnetik Saturasi Remanen (M_{rs}), Magnetik Koersivitas (C), dan Magnetik Koersivitas Remanen (C_r). Pengukuran ini bertujuan untuk analisis mineralogi, serta konsentrasi dan domain magnetik dari sampel. Analisis domain magnetik dalam hal ini akan menggunakan metode estimasi *Day* seperti dalam Evans dan Heller (2003).

- Pengukuran XRF

Proses pengukuran dan observasi ini dilakukan untuk memperoleh informasi komposisi unsur-unsur utama, mineral-mineral, serta morfologi bulir magnetik maupun non magnetik yang terdapat dalam sampel. Pengukuran XRF telah dilakukan di Laboratorium Hidrogeologi ITB - Bandung.

BAB V. HASIL DAN LUARAN YANG DICAPAI

V.1. Fraksi Ukuran Bulir

Tabel 1 menunjukkan fraksi ukuran bulir pada sampel yang berasal dari daerah Tanjung Merah (kode sampel TM), Sulawesi Utara. Pengkodean TM-1 sampai TM-10 menunjukkan 10 lapisan berbeda pada endapan piroklastik di daerah Tanjung Merah.

No	Kode	Ukuran (%)				
		Α	В	С	D	
1	TM-1	46.01	44.65	5.87	3.47	
2	TM-2	53.60	36.50	7.19	2.71	
3	TM-3	60.01	38.53	1.46	0.00	
4	TM-4	40.71	50.51	7.50	1.28	
5	TM-5	71.05	26.77	2.18	0.00	
6	TM-6	65.88	32.55	1.58	0.00	
7	TM-7	44.29	53.61	2.11	0.00	
8	TM-8	63.52	29.24	5.04	2.21	
9	TM-9	49.48	45.42	3.75	1.34	
10	TM-10	72.79	27.21	0.00	0.00	

Tabel 1. Persentase berat untuk empat kategori ukuran bulir.

V.2. Suseptibilitas Magnetik

Suseptibilitas magnetik diukur pada dua kategori ukuran bulir, yaitu bulir ukuran lebih besar (*coarse*) dan bulir halus (*fine*). Data menunjukkan bahwa secara umum nilai suseptibilitas magnetik pada bulir ukuran *fine* lebih tinggi dibandingkan dengan bulir *coarse*. Range nilai suseptibilitas magnetik pada ukuran *coarse* adalah $247,44 \times 10^{-8}$ m³kg⁻¹ - 1615,6 × 10⁻⁸ m³kg⁻¹, sedangkan pada bulir ukuran *fine* adalah 340,76 × 10⁻⁸ m³kg⁻¹ - 1444,02 × 10⁻⁸ m³kg⁻¹. Gambar 3 dan 4 masing-masing menunjukan variasi nilai suseptibilitas magnetik dan suseptibilitas magnetik bergantung frekwensi setiap lapisan pada kategori endapan berbulir *coarse* dan endapan berbulir *fine*.

Gambar 3. Variasi nilai suseptibilitas pada 10 lapisan endapan piroklastik di daerah Tanjum Merah.

Gambar 4. Perbandingan nilai suseptibilitas magnetik bergantung frekwensi dengan nilai suseptibilitas magnetik.

V.3. Magnetisasi Remanen Isothermal

Gambar 5 memperlihatkan representasi hasil pengukuran IRM untuk sampel dari lokasi Tanjung Merah (TM), Citra Land (CL), dan Lansot (LS). Masing-masing diwakili oleh sampel TM-1, CL-1, dan LS-1. Akusisi medan DC menunjukkan bahwa magnetisasi semua sampel tersaturasi pada medan di bawah 300 mT. Hal ini mengindikasikan bahwa sifat magnetik pada sampel-sampel tersebut secara dominan dipengaruhi oleh mineral magnetite (Fe₃O₄). Tingkat saturasi magnetisasi atau Saturation Isothermal Remanent Magnetization (SIRM) pada sampel CL-1 relatif lebih tinggi dari sampel TM-1 dan LS-1, masing-masing secara berurut adalah 0.88 emu/g, 0,84 emu/g, dan 0,16 emu/g.

Gambar 5. Akusisi IRM sampel-sampel dari TM, CL, dan LS menunjukkan medan DC yang tersaturasi di bawah 300 mT

V.4. Pengukuran Histeresis Magnetik

Gambar 6 menunjukkan kurva histeresis magnetik pada sampel dengan kode TM-1. Data histeresis magnetik pada semua lapisan selanjutnya diolah untuk mendapatkan nilai-nilai Magnetik Saturasi (M_s), Magnetik Saturasi Remanen (M_{rs}), Magnetik Koersivitas (C), dan Magnetik Koersivitas Remanen (C_r). Nilai-nilai tersebut diplot berdasarkan diagram yang diperkenalkan oleh Day dkk (Gambar 7) untuk mengidentifikasi domain magnetiknya. Dari

hasil plot menggunakan diagram Day diperoleh bahwa domain magnetik dari semua sampel didominasi oleh pseudo-single domain (PSD).

Gambar 6. Kurva histeresis magnetik sampel TM-1.

Gambar 7. Diagram Day sampel-sampel TM.

V.5. Pengukuran XRF

Pengukuran XRF menghasilkan data unsur-unsur utama (*major elements*) dan beberapa unsur pendukung serta oxida-oxida utama dari sampel setiap lapisan endapan piroklastik. Data kemudian diolah untuk menentukan klasifikasi batuan vulkanik sebagai sumber endapan piroklastik berdasarkan Total Alkalis versus Silica (TAS) diagram. Hasil yang diperoleh adalah endapan piroklastik di daerah Tanjung Merah berasal dari batuan vulkanik andesite (Gambar 8), dengan kandungan Silika berkisar antara 57% - 63% dan kandungan Na₂O + K₂O berada dibawah 4%.

Gambar 8. Pengkategorian sumber dari setiap lapisan endapan piroklastik. Kotak berwarna biru adalah sampel-sampel TM sedangkan yang lain adalah sampel pembanding. Dari hasil tersebut terlihat bahwa sumber endapan piroklastik di lokasi TM adalah batuan vulkanik andesite.

Gambar 9 menunjukkan bahwa sampel-sampel endapan piroklastik di daerah Tanjung Merah masuk pada kategori andesite dengan rendah hingga sedang kandungan K. Gambar 10 adalah hubungan antara konsentrasi oksida-oksida utama dalam endapan piroklastik dengan nilai suseptibilitas magnetik. Terlihat bahwa korelasi positif terjadi antara X_{LF} dan Fe₂O₃ sementara hubungan antara X_{LF} dengan Al₂O₃ dan SiO₂ membentuk korelasi negatif. Hubungan antara oksida-oksida utama pada ukuran bulir berbeda membentuk klaster-klaster tersendiri (Gambar tidak ditampilkan). Hal ini mengindikasikan bahwa hubungan trigonal dari oksida-oksida utama tertentu dapat digunakan sebagai penanda ukuran bulir.

Gambar 9. Perbandingan K₂O terhadap SiO₂.

Gambar 10. Hubungan antara suseptibilitas magnetik dengan beberapa oksida utama dalam endapan piroklastik

V.6. Luaran yang Telah Dicapai

Adapun luaran yang telah dicapai saat ini adalah:

- Presentasi pada seminar internasional Conference on Operations Research (ICOR) 2018.
- Draft artikel untuk publikasi internasional. Jurnal yang akan dituju adalah Geosciences MDPI (terindeks scopus) dengan alamat website adalah https://www.mdpi.com/journal/geosciences

BAB VI. RENCANA TAHAP BERIKUTNYA

Penelitian ini menyisakan beberapa hal yang diharapkan segera rampung, yaitu:

- 1. Finalisasi pengolahan data dan analisis
- 2. Submit artikel ke jurnal Geoscience (MDPI) terindeks scopus.

Pada tahun II (2019), penelitian akan difokuskan pada kajian endapan piroklastik yang terstratigrafi. Pengambilan dan pengukuran akan dilakukan pada resolusi yang lebih tinggi, interval sekitar 5 - 10 cm, untuk mengidentifikasi kemungkinan adanya perbedaan karakteristik fisis dan geokimia pada suatu lapisan serta dengan tujuan untuk mengetahui proses/mekanisme paleovulkanik yang terkait dengan erupsi dan kegempaan vulkanik di Sulawesi Utara berdasarkan variasi sifat magnetik dan mineralogi, termasuk didalamnya komposisi geokimia dan morfologi.

BAB VII. KESIMPULAN

Beberapa kesimpulan sementara dari penelitian yang telah dilakukan adalah:

- 1. Endapan piroklastik di daerah Tanjung Merah (TM) didominasi oleh endapan dengan ukuran bulir yang relatif besar (*coarse*).
- 2. Nilai suseptibilitas magnetik endapan piroklastik TM adalah $247,44 \times 10^{-8} \text{ m}^3 \text{kg}^{-1} 1615,6 \times 10^{-8} \text{ m}^3 \text{kg}^{-1}$ dengan 50% sampel mengandung bulir-bulir superparamagnetik.
- 3. Bulir-bulir mineral magnetik pada sampel memiliki domain state pseudosingle domain (PSD).
- 4. Endapan piroklastik di daerah TM bersumber dari batuan andesite dengan kadar K antara rendah dan sedang.
- Hubungan ternary Al2O3 SiO2 Fe2O3 dapat digunakan untuk estimasi ukuran bulir secara relatif.

DAFTAR PUSTAKA

- Findorak, R., Frohlichova, M., Legemza, J. 2014. Potential of Ilmenite Sand Application in the Iron Ore Materials Agglomeration. Metalurgija 53 (1), 9-12.
- Khwaja, H.A., Aburizaiza, O.S., ..., Simpson, I.J. 2015. Study of Black Sand Particles from Sand Dunes in Badr, Saudi Arabia using Electron Microscopy. Atmosphere 6, 1175 – 1194.
- Skomski, R. 2008. Simple Model of Magnetism. Oxford University Press. New York.
- Tamuntuan, G., Bijaksana, S., Fauzi, U., Maryunani, K. 2015. Parameterization of Magnetic Viscosity and Its Application in Inferring Magnetic Grains in Natural Samples. AIP Conference Proceeding 1656, 070012-1 – 070012-4.
- Tamuntuan, G., Bijaksana, S., King, J., Russell, J., Fauzi, U., Maryunani, K., Aufa, N., Safiuddin, L.O. 2015. Variation of Magnetic Properties in Sediments from Lake Towuti, Indonesia, and Its Paleoclimatic Significance. Palaeogeography Palaeoclimatology Palaeoecology 420, 163 – 172.
- Vasudevan, G. 2016. Performance on Used Iron Sand as Concrete Admixture. Prosiding 3rd International Conference on Civil, Biological, and Environmental Engineering, 10-13.
- Yudha, S., Angasa, E., Fitriani, D., Falahudin, A. 2017. Iron Sand ZnO Based Materials of Natural Origin for Dye Decolorization Under Sunlight Irradiation. AIP Conference Proceeding 1823, 020114-1 – 020114-6.
- Yulianto, A., Bijaksana, S., Loeksmanto, W. 2002. Karakterisasi Magnetik dari Pasir Besi Cilacap. Jurnal Fisika – Himpunan Fisika Indonesia A5 (0527).
- Zhang, Z., Li, J., Li, X., Huang, H., Zhou, L., Xiong, T. 2012. High Efficiency Iron Removal from Quartz Sand using Phosphoric Acid. International Journal of Mineral Processing 114-117, 30-34.

LAMPIRAN-LAMPIRAN

1 Article

Magnetic and Geochemical Analysis of Pyroclastic Deposit in North Sulawesi

4 Gerald Tamuntuan ^{1,*}, Hanny Sangian ¹, and Guntur Pasau ¹

- 5 ¹ Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115;
- 6 pasaujunior@gmail.com; hannysangian@yahoo.co.id
- 7 * Correspondence: gtamuntuan@gmail.com; Tel.: +62-812-445-0886
- 8 Received: date; Accepted: date; Published: date

9 Abstract: North Sulawesi is one of the volcanic regions in Indonesia. Volcanic activity in this area 10 was seen, among others, with the discovery of stratified pyroclastic deposits in several places. 11 Although this sediment can be used to uncover the process of volcanism in this area in the past 12 (paleovulcanic), but the study of the process and mechanism of paleovcanics in North Sulawesi by 13 utilizing pyroclastic deposits is hardly found. Therefore, studies have been carried out on 14 pyroclastic deposits using magnetic methods, X-ray spectroscopy and granulometric analysis. The 15 study was carried out at the pyroclastic deposit site in the Tanjung Merah (TM) area, North 16 Sulawesi which has 10 sediment layers. The results obtained indicate that the sediment in each 17 layer is dominated by coarse grains. The magnetic susceptibility of TM pyroclastic deposits has a 18 value varying between 247.44 × 10-8 m3kg-1 - 1615.6 × 10-8 m3kg-1. Frequency-dependent 19 magnetic susceptibility shows that 50% of the sample contains superparamagnetic grains. Magnetic 20 mineral grains in the sample generally have a pseudosingle-domain (PSD) state domain. The 21 results of XRF data analysis showed that pyroclastic deposits in the TM area were sourced from 22 andesite rocks with K levels from low to moderate.

- 23 Keywords: Pyroclastic deposit; Magnetic properties; Geochemical; North Sulawesi
- 24

25 1. Introduction

26 North Sulawesi is one of the regions with complex geodynamic problems. This area has several 27 faults, surrounded by subduction zones in the Sulawesi Sea and the Maluku Sea, and is also 28 inhabited by several active volcanoes that are relatively vulnerable to earthquakes and disasters 29 caused by volcanic processes. One sign of volcanic eruption is the presence of falling pyroclastic 30 material (Cioni et al, 2003). Pyroclastic material deposited in most areas of North Sulawesi is 31 relatively thick and forms layers which represent episodes and characteristics of eruptions over 32 time. This certainly opens up an opportunity to understand the past volcanic process (paleovolcanic) 33 from time to time because the characteristics of the deposited pyroclastic material are closely related 34 to the intensity and magnitude of the eruption / volcanic eruption (Bellotti et al., 2010) which also 35 has implications for the seismicity produced. A good understanding of paleovulkanism will have 36 implications for the introduction of patterns and characteristics of volcanic eruptions that can trigger 37 disasters in an area (Siebe et al, 1995).

Pyroclastic deposits are one of the potential objects for paleovolcanic studies (Jessop et al, 2016; Pal et al, 2010). This sediment was formed as a deposition resulting from volcanic eruptions in the form of rock fragments with different grain sizes (granulometry), mineralogy, and different morphology. The rock that is intruded (in the form of fragmentation) is basically formed as a result of cooling of the magma. During the formation process of magma, there is a growth of magnetic minerals with different characteristics in a rock affected by the location of its formation in the vent volcano. When an eruption occurs, temperature conditions and gas expansion can affect the

- 45 morphology and size of the grain from the pyroclastic material thrown. These things can be a marker
- 46 in analyzing the process or mechanism of paleovolcanics.
- 47 Studies of the magnetic properties of pyroclastic deposits in North Sulawesi have not been 48 carried out, whereas the understanding of the characteristics of magnetic properties supported by 49 mineralogical analysis and granulometry can be a very potential way to uncover the paleovolcanic 50 mechanism in North Sulawesi. Therefore, it is necessary to characterize the magnetic properties, 51 mineralogy, and granulometry of pyroclastic deposits.

52 2. Materials and Methods

The samples in this study are pyroclastic deposits obtained from Tanjung Merah area in North Sulawesi (Figure 1). Five samples were carried out at each layer from pyroclastic deposit site. The samples are then dried to have the same relative water content. Separation of grain size of pyroclastic deposits is done by sieving on three different mesh sizes. Determination of the grain size fraction is done by weighing the sieving results. After that, the samples were characterized using magnetic methods and Fluorescence X-Ray (XRF). In general the measurements that have been carried out are as follows:

- 60 Magnetic susceptibility measurement
- 61 Magnetic susceptibility was measured at Rock Magnetic Laboratory, Institut Teknologi 62 Bandung, using the Bartington Susceptibility Meter with a 2B sensor. Measurements were carried 63 out on two different frequencies of 470 Hz and 4700 Hz to obtain the low frequency magnetic 64 susceptibility parameter (χ_{LF}) and high frequency magnetic susceptibility (χ_{HF}) as well as frequency 65 dependent susceptibility (χ_{FD}). χ_{FD} in this study will be used to indicate superparamagnetic grain 66 concentration in the sample.
- 67 Histeresys magnetic measurement

68 The measurement of magnetic hysteresis was carried out with a vibrating magnetometer (VSM) 69 device located at the Center for Materials and Mineral Technology Studies at BATAN, Serpong. In 70 principle, this measurement was done in order to obtain the magnetization changes to the field effect 71 which can then produce four magnetic hysteresis parameters, which are Magnetic Saturation (Ms), 72 Magnetic Saturation Remanen (Mrs), Magnetic Coercivity (C), and Magnetic Remanent Coercivity 73 (Cr). These parameters are then used for mineralogical analysis, as well as the concentration and 74 magnetic domain of the sample. Magnetic domain analysis in this case will use Day estimation 75 methods as in Evans and Heller (2003). 76

77

78

79

Figure 1. Sampling location at Tanjung Merah, North Sulawesi. This exposure shows pyroclastic fall deposit probably from several explosive eruptions.

80

81 - Observation of X-Ray Fluorescence (XRF)

The XRF observation process was carried out to obtain information on the composition of the main elements, minerals, and the magnetic and non-magnetic grain morphology contained in the sample. XRF measurements were carried out at the Hydrogeology Laboratory, Institut Teknologi Bandung.

86 3. Results

87 3.1. The Fraction of Grain Size

Pyroclastic deposits in the Tanjung Merah area have 10 different layers (Figure 2). Samples are
taken from each layer and given codes ranging from TM-1 to TM-10. Table 1 shows the grain size
fraction (in wt%) in samples from the Tanjung Merah (TM) area, North Sulawesi.

91

```
92
93
```

Table 1. Grain size fraction (in weight percent) in each layer of pyroclastic deposits in Tanjung Merah

N	Vala		Fraction of gra	ain size (wt%)	
INO	Kode —	Α	В	С	D
1	TM-1	46.01	44.65	5.87	3.47
2	TM-2	53.60	36.50	7.19	2.71
3	TM-3	60.01	38.53	1.46	0.00
4	TM-4	40.71	50.51	7.50	1.28
5	TM-5	71.05	26.77	2.18	0.00
6	TM-6	65.88	32.55	1.58	0.00
7	TM-7	44.29	53.61	2.11	0.00
8	TM-8	63.52	29.24	5.04	2.21
9	TM-9	49.48	45.42	3.75	1.34
10	TM-10	72.79	27.21	0.00	0.00

94

95 3.2. Magnetic Susceptibility

96 Magnetic susceptibility is measured in two categories of grain sizes, which are the coarse grains and 97 the fine one. The data shows that in general the value of magnetic susceptibility in fine-grain size is 98 higher than coarse grain. The range of magnetic susceptibility value on coarse size is $247,44 \times 10^8 \text{ m}^3\text{kg}^{-1} -$ 99 $1615,6 \times 10^8 \text{ m}^3\text{kg}^{-1}$, while in fine size grain is $340,76 \times 10^8 \text{ m}^3\text{kg}^{-1} - 1444,02 \times 10^8 \text{ m}^3\text{kg}^{-1}$. Figures 3 and 4 100 respectively show variations in the value of magnetic susceptibility and frequency dependent magnetic 101 susceptibility depending on the frequency of each layer in the coarse-grained deposit category and 102 fine-grained deposits.

Figure 2. Variation in susceptibility values for 10 layers of pyroclastic deposits

in Tanjung Merah area.

Figure 3. Ratio of frequency dependent magnetic susceptibility and magnetic susceptibility.

109 V.3. Hysteresis Magnetic

110 Figure 4 shows the magnetic hysteresis curve from sample TM-1. In giving the DC magnetic field to 111 the sample, it was seen that the magnetic moment began to saturate in the 300 mT field. This indicates 112 that magnetic minerals which give a dominant influence to the sample are magnetite (Fe₃O₄). Magnetic 113 hysteresis curves on all layers are then processed to obtain the values of Magnetic Saturation (Ms), 114 Magnetic Saturation Remanen (Mrs), Magnetic Coercivity (C), and Magnetic Remanent Coercivity (Cr). 115 These values are plotted based on the diagram introduced by Day et al (Figure 5) to identify the 116 magnetic domain. From the results of the plot using Day diagrams it was obtained that the magnetic 117 domain of all samples was dominated by pseudo-single domain (PSD).

Figure 4. Hysteresis magnetic curve of sample TM-1.

Figure 5. Day diagram show that the domain state of all samples are pseudo-single domain.

123

124 V.4. X-Ray Fluorescence (XRF) Measurement

125 XRF measurements produce data on major elements, some minor elements as well as the main 126 oxides of the sample in each layer of pyroclastic deposits. The data is then processed to determine the 127 classification of volcanic rocks as a source of pyroclastic deposits based on Total Alkalis versus Silica 128 (TAS) diagrams. The diagram shows that pyroclastic deposits in the Tanjung Merah area originate from 129 andesite volcanic rocks (Figure 6), with Silica content ranging from 57% - 63% and Na2O + K2O content 130 below 4%. Figure 8 shows that samples of pyroclastic deposits in the Tanjung Merah area are categorized 131 as andesite with low to medium K.

132

133 134

135

136

Figure 6. TAS diagram indicate that the source of pyroclastic deposits in the TM location are andesite volcanic rocks. Blue boxes are TM samples while others are comparison samples

are andesite with low-medium potassium concentrations

142 5. Conclusions

139

143 Pyroclastic deposits in the Tanjung Merah (TM) area are dominated by sediments with 144 relatively large coarse sizes. The magnetic susceptibility value of TM pyroclastic deposits is 247.44 × 145 10⁻⁸ m³kg⁻¹ - 1615.6 × 10⁻⁸ m³kg⁻¹ with 50% samples containing superparamagnetic grains. Magnetic 146 mineral grains on the sample have a pseudosingle domain (PSD) state domain. Pyroclastic deposits 147 in the TM area are sourced from andesite rocks with K levels between low and medium.

148 Author Contributions: G.T., H.S., and D.D. conceived and designed the experiments; G.T and G.P. collected the 149 samples; G.T and H.S. performed the experiments; and G.T., H.S., and G.P. analyzed the data and wrote the 150 paper.

- 151 Funding: This research was funded by Direktorat Riset dan Pengabdian Masyarakat (DRPM) Ristek Dikti through
- 152 Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT) research grant to GT based on Letter no. 3/E/KPT/2018 and
- 153 contract no. 120/UN12.13/LT/2018.
- 154 Conflicts of Interest: The authors declare no conflict of interest.

155 References

- 156 Bellotti, F., Capra, L., Sarocchi, D., D'Antonio, M. 2010. Geostatistics and Multivariate Analysis as a Tool to 157 Characterize Volcaniclastic Deposits: Application to Nevado de Toluca Volcano, Mexico. Journal of 158 Volcanology and Geothermal Research Vol. 191, 117-128.
- 159 Bradley, R.S., Heller, F. 1999. Preface, vii - xii dalam Maher, B.A. dan Thompson, R., (eds.), Quaternary Climates, 160 Environments and Magnetsm. Cambridge University Press, Cambridge, 390 p.
- 161 Cioni, R., Longo, A., Macedonio, G., Santacroce, R., Sbrana, A., Sulpizio, R., Daniele, A. 2003. Assessing 162 Pyroclastic Fall Hazard through Field Data and Numerical Simulations: Example from Vesuvius. 163 Journal of Geophysical Research 108 (B2), 1-11, doi:10.1029/2001JB000642
- 164 Dunlop, D.J., Özdemir, Ö., 1997. Rock Magnetism: Fundamental and Frontiers. Cambridge University Press, UK, 165 573 p.
- 166 Evans, M.E., Heller, F., 2003. Environmental Magnetism: Principles and Application of Enviromagnetics. Academic 167 Press, New York, 299 p.
- 168 Gubbins, D., Herrero-Bervera, E., 2007. Encyclopedia of Geomagnetism and Paleomagnetism. Springer, Dordrecht, 169 The Netherlands, 1054 p.

- Jessop, D.E., Gilchrist, J., Jellinek, A.M., Roche, O. 2016. Are Eruptions from Linear Fissures and Caldera Ring
 Dykes More Likely to Produce Pyroclastic Flows?. Earth and Planetary Science Letters Vol. 454, 142-153.
- Lagroix, F., Banerjee, S.K., Jackson, M.J. 2004. Magnetic Properties of the Old Crow Tephra: Identification of a
 Complex Iron Titanium Oxide Mineralogy. Journal of Geophysical Research Solid Earth 109, B01104,
 doi:10.1029/2003JB002678
- Pal, T., Ghosh, B., Bhattacharya, A., Badhuri, S.K. 2010. Felsic Tuff from Rutland Island A Pyroclastic Flow
 Deposit in Miocene-Sediments of Andaman-Java Subduction Complex. Journal of Earth System Science
 Vol. 119 (1), 19-25.
- Passier, H.F., De Lange, G.J., Dekkers, M.J. 2001. Magnetic Properties and Geochemistry of the Active Oxidation
 Front and the Youngest Sapropel in the Eastern Mediterranean Sea. Geophysic Journal International
 145, 604-614.
- 181 Putnis, A., 1995. Introduction to Mineral Sciences. Cambridge University Press, Cambridge, 457 p.
- Siebe, C., Macias, J.L., Abrams, M., Rodrigues, S., Castro, R., Delgado, H. 1995. *Quaternary Explosive Vulcanism and Pyroclastic Deposits in East Central Mexico: Implications for Future Hazardz*. Field Trip Guide Book #1
 Geological Society of America Annual Meeting 1995.
- Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer, H., Stix, J. 2000. *Encyclopedia of Volcanoes*. Academic Press,
 San Diego, 1417 p.
- Tamuntuan, G., Bijaksana, S., King, J., Russell, J., Fauzi, U., Maryunani, K., Aufa, N., Safiuddin, L. 2015.
 Variation of Magnetic Properties in Sediments from Lake Towuti, Indonesia, and Its Paleoclimatic
 Significance. Palaeogeography Palaeoclimatology Palaeoecology 420, 163-172.
- 190 Viglioti, L. 2014. Magnetic Properties of the Campanian Ignimbrite and the Marine Y5 Tephra Layer. Geological
 191 Society, London, Special Publications, 396.

© 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

