FACULTY OF ANIMAL SCIENCE
BOGOR AGRICULTURAL UNIVERSITY

THE SECOND INTERNATIONAL SEMINAR ON ANIMAL INDUSTRY
"Empowering Local Resources for Sustainable Animal Production in Adapting to Climate Change"

Jakarta Convention Center, Jakarta-Indonesia
5-6 July 2012

PROCEEDING

Organized by:

Supported by:

[Logos and names of organizations]
PROCEEDING

The Second International Seminar on Animal Industry
“Empowering Local Resources for Sustainable Animal Production in Adapting to Climate Change”
Jakarta Convention Center, Jakarta-Indonesia, 5-6 July 2012

LIST OF EDITORS

Scientific Editors

Chief
Prof. Dr. Ir. Dewi Apri Astuti, MS.

Member
Prof. Dr. Ir. Komang G. Wiryawan
Prof. E. R. Orskov
Prof. H. M. Shelton
Prof. Jong K. Ha
Prof. Dr. Ir. Wasmen Manalu, M.Sc
Prof. Dr. Ir. Ronny R. Noor, M.Rur. Sc.
Prof. Dr. Ir. Muladno, MSA
Prof. Dr. Ir. Cece Sumantri, M.Sc
Prof. Dr. Ir. Toto Toharmat, M.Sc
Dr. Sri Suharti, S.Pt., M.Si.
Tuti Suryati, S.Pt., M.Si.

Technical Editors

: Irma Nuranthy Purnama, S.Pt.
Nur Hidayah, S.Pt.
Titis A. P. Apdini, S.Pt.

List of Reviewers

Prof. Dr. Ir. Dewi Apri Astuti, MS.
Prof. Dr. Ir. Komang G. Wiryawan
Prof. E. R. Orskov
Prof. H. M. Shelton
Prof. Jong K. Ha
Prof. Junichichi Takahashi
Dr. John B. Moran
Prof. Dr. Ir. Muladno, MSA
Prof. Dr. Ir. Ronny R. Noor, M.Rur. Sc.
Prof. Dr. Ir. Toto Toharmat, M.Sc
Prof. Dr. Ir. Wasmen Manalu, M.Sc
Prof. Dr. Ir. Erika B. Laconi, MS
Prof. Dr. Ir. Iman Rahayu, MS
Tuti Suryati, S.Pt., M.Si.
Dr. Ir. Asep Sudarman, M.Sc.
Dr. Ir. Asnath M. Fuah
Dr. Despal, S.Pt., M.Agr.Sc.
Dr. Anuraga Jayanegara
Dr. Ir. Dwierra Evyernie, MS
Dr. Ir. Henny Nuraini, M.Si.
Dr. Ir. Idat Galih Permama, M.Sc
Dr. Irna Isnafie Arief, S.Pt., M.Si.
Dr. Ir. Luki Abdullah, M.Agr.Sc.
Dr. Ir. Panca Dewi MHKS, MS
Dr. Ir. Rarah Ratih A.M, DEA.
Dr. Ir. Ria Mutia, M.Sc.
Dr. Rudi Afnan, M.Sc.Agr.
Dr. Ir. Rudy Priyanto, MSc.
Dr. Sri Suharti, S.Pt., M.Si.
Dr. Ir. Sumiati, M.Sc.
Dr. Ir. M. Yamin, M.Agr.Sc
Dr. Ir. Yuli Retnani, MS

Faculty of Animal Science, Bogor Agricultural University
Jln. Agatis, Kampus IPB Darmaga, Bogor 16680 Indonesia
Phone: +62 251 8620553; Fax: +62 251 8620553/ 8622842
e-mail: isai_ipb@yahoo.co.id
Dear colleagues,

It is my great pleasure to welcome all of you to the Second International Seminar on Animal Industry 2012, and to Jakarta the capital city of Republic of Indonesia. This seminar is conducted by the Faculty of Animal Science - Bogor Agricultural University in collaboration with Animal Scientist’s Association of Indonesia, Indolivestock 2012 Expo and Forum, Directorate General of Higher Education – Ministry of Education and Culture Republic of Indonesia, Directorate General of Livestock and Animal Health Services-Ministry of Agriculture, as well as Journal of Animal Science and Technology (Media Peternakan).

There will be 131 papers presented during the seminar consisted of 12 papers from invited speakers, and 119 papers from participants in which 72 papers will be presented orally and 47 papers will be presented as posters. The invited speakers come from several different countries including Australia, England, Japan, South Korea, South Africa, Sweden, Switzerland, United States of America, and of course Indonesia. The presenters for supporting papers come from several countries namely Malaysia, Thailand, Turkey, Iran, Irak and Pakistan, as well as from 22 different universities and research institutes in Indonesia.

This is a great opportunity for all of us to share knowledge and experience regarding the advanced development of animal science and technology in different part of the world especially related to the recent climate changes which may interferes animal production system. By closely collaborating and sharing information we will be able to overcome the problems better, faster and more comprehensive.

On behalf of the organizing committee, I would like to express my sincere thanks to Directorate General of Higher Education - Ministry of Education and culture for funding this seminar through Himpunan Profesi Grant, also to PT. Napindo Media Ashotama for partly funding the seminar and to Director General of Animal Livestock and Animal Health Services – Ministry of Agriculture for his support and collaboration. Thanks are also addressed to our sponsors namely PT. Nutreco, PT. Cheil Jedang, PT. Sinta Prima Feedmill, PT. Kaltim Prima Coal, CV. Swen IT. This seminar is also supported by some units of Bogor Agricultural University namely Department of Nutrition and Feed Technology, Department of Animal Production and Technology - Faculty of Animal Science, Graduate School, Diploma Program, and Graduate Business School.

Last but not least, I would like to thank the organizing committee who has been working very hard to make this seminar a successful event. For all participants, I
apologize for the inconveniences before, during, and after the seminar. I wish all of you will have a great time and a fruitful discussion. Thank you.

Jakarta, July 5th, 2012
Chairperson of Organizing Committee
Prof. Komang G. Wiryawan, Ph.D
Ladies and Gentlemen,

Assalamualaikum warahmatullahi wabarakatuh

First of all, I would like to extend my warm welcome to all participants of the Second International Seminar on Animal Industry 2012 to Jakarta Convention Centre. Together with us in this seminar are delegates from various parts of the world: South Africa, Switzerland, Japan, Australia, UK, Sweden, South Korea, Pakistan, United States of America, Turkey, Iran, Irak, Thailand, and a part from the local delegates, our colleagues from various universities in Indonesia: from Sabang to Merauke, representatives from the government livestock service agencies, research centre as well as businessmen.

It is an honor for me, the Dean of Faculty of Animal Science, Bogor Agricultural University to be able to host such an important seminar. Let me begin by acknowledging the Napindo Media Tama Limited Corp. and Animal Scientist’ Society of Indonesia for their collaboration in organizing this event. In this special occasion I would also like to express my appreciation to Dr. Ir. Suswono, MMA, the Indonesian Minister of Agriculture for his support and encouragement. We also extend our gratitude to Directorate General of Higher Education, Indonesian Ministry of Education and Culture as main sponsor of this seminar. My appreciation also goes to all invited speakers for their willingness to share their knowledge and vision with us. To the contributors and sponsors, I would like to express my great thanks. To all members of steering and organizing committee, I would like to express my deep appreciation for their effort to make this event successful.

Ladies and Gentlemen,

Global climate changing is a subject that is very intense we hear lately. It affects all sectors of our life including animal production system. The ability of our stakeholders to adapt to it will determine our survival. The emphasis of the seminar is on animal industry as this sector is seen as a leverage factor of the animal production system. The development of animal industry is vital in producing significant contribution of animal production system as a whole.

The objective of this seminar is primarily to present the development of science and technology innovations in animal industry, to disseminate the results of animal research on livestock production improvement, to broaden perspectives of stakeholders on potencies, prospects, and constrains on animal industry. Issue strategic with respect to animal breeding and genetic, feed and nutrition, animal
management and production, animal product’s technology, socio-economic and policy, as well as animal disease and its prevention will also be discussed in depth.

Ladies and Gentlemen,

As we are all aware, the impact of globalization upon us is becoming manifest. To be able to join the mainstream, we have to improve our local competitiveness and uniqueness through optimalization of our local resources utilization. What needs to be strengthened may include persistency of culture identity since animal production systems in several countries are not only socio, technologic or economic aspects of the people. It is a culture of life.

Ladies and Gentlemen,

Over the next two days, I believe you will be discussing issues and matters regarding the empowering local resources for sustainable animal production in adapting to climate change. This seminar will include discussions based on more than 119 paper presentations that cover issues and topics encompassing animal breeding and genetic, feed and nutrition, animal management and production, animal product’s technology, socio-economic and policy, as well as animal disease and its prevention. I believe you will find such topics interesting. Because the speakers are well known in their respective fields and will be able to provide you with the current state of the art of animal industry development in their region.

On this occasion, we will have the opportunity to work together to improve our contribution to animal industry development for the future. We have been fortunate enough to be given a great opportunity whereby we can learn from each other. I also hope that all of you will use this opportunity to strengthen the existing network. I am sure that all participants will greatly benefit from this seminar.

Let’s get our act together for excellence and quality in research so that we can improve our contribution to the development of animal industry in the future.

Wabillahi taufiq wal hidayah
Wassalamualaikum warahmatullahi wabarakatuh

Jakarta, July 5th, 2012
Dr. Ir. Luki Abdullah, M.Sc.Agr.
Dean
Foreword from Chairperson of Organizing Committee

Remarks from Dean of Faculty of Animal Science

Seminar Program

Seminar Layout

List of Contents

Invited Speaker

GM and Non-GM Rumen Microbes in Enhancing Animal Productivity. T.S. Park, J. K. Seo, & Jong K. Ha

Consumer Preferences in Meat. Louw Hoffman & Donna Cawthorn

Improving Local Feed Resource to Increase Nutrient Availability to Support Sustainable Agriculture. E.R. Orskov

Planning Dairy Development Programs in Tropical Asia. J. B. Moran & J. W Brouwer

Carrier Proteins in Milk: Basic and Potential Applications. Kenji Fukuda

Indonesia Farm Animal Genetic Resources in Adapting to Climate Change. Ronny Rachman Noor

Tropical Forages in Indonesia: Past experience and Future Opportunity. H.M. Shelton

BREEDING AND GENETICS

Improvement the Genetic Potential of Local Chicken By Combination of Crossbreeding, Selection Method, Cellular Analysis and Nutritional Adjustment to Produce the Candidate of Local Layer. M. Aman Yaman, Yurliasni, Zulfan, & Muhammad Daud

Physical Meat Characteristics of Local Thin Tail Sheep based on Calpastatin (CAST) Genotype Variation. M.I.A. Dagong, C. Sumantri, R.R. Noor, R. Herman, & M. Yamin

Genetic Variation of the IGF1 and OPN Genes in Holstein-Friesian Dairy Cattle of Historical and Non-Historical Twins. Anneke Anggraeni, Hasanatun Hasinah, Santi Ananda Arta, Bess Tiesnamurti, Restu Misrianti, & Eryk Andreas

Genetic Marker Approach for Confirming the Existing Twinning Trait in PO Cattle. Endang T. Margawati, Paskah P. Agung, & Muhamad Ridwan

Proceeding of the 2nd International Seminar on Animal Industry | Jakarta, 3-6 July 2012
Carcass Traits Association With GH/Alu Gene Polymorphism in Indonesian Aceh Cattle. Eka Meutia Sari, Ronny Rachman Noor, Cece Sumantri, & Endang Tri Margawati.. 104

Identification of Holstein-Friesian Lactating Cows as Good Replacement Stocks under Small-Scale Dairy Farming in a Highland of West Java, Indonesia. Anneke Anggraeni, Tati Herawati, Subandrio, Kusuma Diwyanto, Chalid Talib, & Santi Ananda Arta.. 110

Qualitative Traits of Walik Chickens, The Rare Indigenous Chicken, in West Java, Indonesia. Maria Ulfah, Jakaria, & Restymaya Tirigan... 117

The Classification of Body Measurement on Syrian Hamster (Mesocricetus auratus) Based on Factor Analysis and Principal Component Analysis. R. H. Mulyono, A. S. Tjakradidjaja, L. L. Sari, & Meliyana .. 124

Phenotypic Characteristics of Legund Chickens in West Java, Indonesia. Jakaria, Maria Ulfah, & Desha Anandya Putri... 130

Morphometric Performances of Thin Tail Sheep with Differences Calpastatin (Cast-1) Genotipees. B.W. Putra, Nurhidayat, & C. Sumantri .. 135

FEED AND NUTRITION

Sub Theme: Agrostology

Production and Nutrient Uptake of Sweet Corn Treated with Manure 'plus' and Inorganic Fertilizer. Dwi Retno Lukiwati, Tri Winarni Agustini, Budi Adi Kristanto, & Surahmanto.. 141

Indigofera zollingeriana: A Promising Forage and Shrubby Legum Crop for Indonesia. L. Abdullah, A. Tarigan, Suhrarina, D. Budhi, I. Jovintry, & T.A. Apdini .. 149

Potential of Weeds for Ruminant Feed on Rice Fields in Java. N. R. Kumalasari, E. Bergmeier, & L. Abdullah.. 155

Mineral Balance of Brachiaria humidicola Pasture which is Introduced with Creeping Legumes Creeping at UP3J. Karti, P.D.M.H.K., L. Abdullah, I.K.G.Wryarvan, & Heru ... 161

Mineral Concentration of Forage Grasses at Different Salinity Levels of Soil. Florentina Kusmiyati, Sumarsono, Karno, & Eko Pangestu.. 166

Sub Theme: Feed Technology

Theobromine Content in Cocoa Pod Husk (Theobroma cacao) Fermented by Aspergillus spp. in Different of Chop Sizes and Fermentation Times. F. F. Munier & H. Hartadi ... 173

Differences in Drying Method of King Grass (Penisetum hybrid) Silage Samples Prepared for in Vitro Digestibility Analysis. A. Sofyan & H. Herdian .. 175
Effect of Prebiotic on Broiler Performance: A Meta-Analysis. Bayu Sesarahardian

A Model of Sustainable Ruminant Feed Industry in Jepara, Central Java. Kholishotul Fauziyah, Heri Ahmad Sukria, & Burhanuddin

The Effect of Effective Microorganisms-4 (Em 4) Addition on the Physical Quality of Sugar Cane Shoots Silage. Sofia Sandi, Muhakka, & Ardi Saputra...

Chemical and Physical Quality of Sago (Metroxylon sago Rottb.) Waste Based Wafer Complete Ration for Aceh Beef Cattle. Muhammad Daud, M. A. Yaman, & Zulfan

Quality of Vegetable Waste Silages Treated with Various Carbohydrate Sources. Wulansih Dwi Astuti, Yantyati Widyastuti, Roni Ridwan, & Elvi Yetti

Sub Theme: Poultry

Cholesterol Contents and Carcass Yields of Broiler Meats Fed Different Level of Garlic Meal. Hafsah, Nuun Marfuah, & Sugianto

The Supplementation Effect of Fish Oil, Corn Oil, and Zinc in Fiber Ration on Cholesterol Profile, Omega-3 and Omega-6 of Alabio Duck Egg. Danang Biyatmoko

The Bacteriological Quality of Chicken Offal and Spoiled Egg as Feed for Catfish and Tilapia Rearing in Penang, Malaysia. Titik Budiati, Gulam Rusul, Wan Nadiah Wan Abdullah, Yahya Mat Arip, & Rosma Ahmad

Comparison of Mycotoxin Binders in The Aflatoxin B1-Contaminated Broiler Diets. B. Sundu, U. Hatta, & H.B. Damry

Improvement of Nutritive Values of Local Feedstuffs as Mineral Sources for Kampong Laying Hens. Khalil

Zink Supplementation on Complete Tea Waste Ration (Camelia sinensis) to Evaluate Performance Reproduction of Young Rabbit Does. Lilis Khotijah, T. Sari, & D.A. Astutin

Lipid Deterioration of Layer Diet That Contains Lemuru Fish Oil (Sardinella longiceps) and Turmeric (Curcuma domestica) as Antioxidant During Storage Period. Yosi Fenita

Effects of Dietary Supplementation of Natural Feed Additive on Leucocyte Profile and Lymfoid Organ of Broiler. R. Mutia, Deyusma, & D. M. Suci

Effect of Mannanases-predigested Palm Kernel Meal in the Diets on Nutrient Digestibilities and Broiler Performance. B. Sundu, R. Tantu, & J. Elisabeth

Sub Theme: Ruminant

Biodegradation of coffee husk substrate during the mycelia growth of Pleurotus ostreatus and the effect on in vitro digestibility. Irma Badarina, D. Evvyernie, T. Toharmat, E. N. Herliyana, & L.K. Darusman

In vitro Fermentation and Bacterial Protein Synthesis in the Different Diets Supplemented with Lerak Extract plus Mineral (Ca, P, Mg, S). S. Suharti, N. Aizah, D. M. Suci, D.A. Astutin, & E. Wina

Ruminal Fungi Colonisation of Stem Tissue of Untreated and Urea Treated Rice Straw Varieties. Dwi Yulistiani

Reducing Methane (CH₃) Emission of Sheep Fed a Diet Supplemented With Coconut And Palm Oil. Asep Sudarman, Komang G. Wiryawan, & Agung Purnomoadi
In Vitro Digestibility of Lampoyangan Grass (Panicum sormentosum Roxb) in Form of Hay and Silage. Fatmawati.. 368
Improving Production Performance of Peranakan Ongole Cows and Nutrient Digestibility of Rice Straw Based Diet with Energy-Protein Supplementation Given Separately or in Complete Feed. Suryahadi, Anita S. Tjakradidjaja, D. Sunaryo, & O. S. Astuti.. 374
Effect of Waste Products on Ruminal Microbe Population and Rumen Characteristics in Vitro. R.W.S. Ningrat & Khasrad.. 381
Evaluation of Complete Ration Silage on Performance and Quality of Goat Meat. Tintin Rostini & Irwan Zakir .. 384
The Potency of Sugar Cane Waste Product for Supporting Sustainable Beef Cattle Feed Resources at Integrated Farming Center in Solok Regency, West Sumatra. Adrizal, A. Suprapto, & Mirzah .. 389
The Effect of Essential Oils of Spearmint on the in Vitro Rumen Fermentation, Growth, and Deaminative Activity of Amino Acid Fermenting Bacteria. Mosayeb Taghavi-Nezhad, Daryoush Alipour, Pouya Zamani, & Shahin Yazdegari........ 394
Effect of Energy and Protein Contents of Dietary Having the Same Synchrony Index on Local Beef Cattle Performance. Hermon, Suryahadi, K.G. Wiryawan, & S. Hardjosoewignjo ... 400
Fermentability and Digestibility of Ration Containing Crude Curcin Extract of Jatropha curcas L. Seed Meal. Anita S. Tjakradidjaja, Komang G. Wiryawan, & Meri Afriyanti ... 406
Comparison Between Portable and Static Types of Silo on Silage Quality of Total Mixed Ration Containing Ramie Leaves (Boehmeria nivea L. GAUD). Despal, N.A. Qitri, K.B. Satoto, & I.G. Permana ... 413
Blood Metabolite Statues of Local Sheep Fed With Indigofera sp. Dewi Apri Astuti, Sri Rahayu, Budi Satoto, Rudy Priyanto, Lilis Khotidjah, Tuti Suryati, & M. Baihaqi ... 420
Analysis of the Kinetics Fermentability, Degradability, and Nutritive Value of Soybean Groats and Lemuru Fish Oil Protected by in-Vitro. J. Riyanto................. 425
Combination Effect of Clove and Cinnamon Oil on in Vitro Rumen Gas and Methane Production. M.N. Rofiq, S. Martono, M. Görgülü, & M. Boga......................... 431
Effects of Feeding Different Level of Dietary Protein with or without Probiotics or Ionophores on Performance of Growing Kids. Muhammad Sarwar, Muhammad Aasif Shahzad, & Mahr un Nisa... 438
Evaluation of Nutrient Digestibility of Goats Fed on Biofermented Cocoa Pods Using Phanerochaete chrysosporium Supplemented by Mangan (Mn) and Calsium (Ca). Suparjo, E.B. Laconi, K. G. Wiryawan, & D. Mangunwidjaya......... 447

Proceeding of the 2nd International Seminar on Animal Industry | Jakarta, 5-6 July 2012
Nutritive Values of Forages Evaluated Using a Mixed Bacteria Isolated From the Rumen Liquor of Buffalo. Iwan Prihantoro, Yulfit Sari, Lilis Riyanti, Triyana Enggar Sasmita, Dwierra Evvyernie, Suryani, Luki Abdullah, & Toto Toharmat.......................... 454
Greenhouses Gases Emissions from Dairy Cattle in Indonesia. I.G. Permana, Suryahadi, & E. Qurimansari .. 459
Managerial and Nutritional Strategies to Minimize Lactational and Reproductive Losses in Heat-Distressed Dairy Cows. Armagan Hayirli.. 464
Ongole Crossbreed Performance Given Silage of Cattle Rumen Contens as a Feed Substitute for Grass. Engkus Ainul Yakin, Ali Mursyid Wahyu Mulyono, Ahimsa Kandi Sariri, & Sri Sukaryani .. 490
Performances and Meat Cholesterol Content of Fat Tail Sheep Fed Diets Supplemented with Sardinella Fish Oil Based Ca-soap Mixed with Herbal. A. Sudarman & D.A. Astuti .. 497
Diversity of Domestic Grasses for Sheep Browse in the Coastal District Gebang, Cirebon Residence. Muhammad Agus Setiana & M.A.K. Kusuma................................. 502
Physical Characteristic and Palatability Test of Biscuit Feed for Sheep. Yuli Retman, Eka I. Wati, & Lidy Herawati .. 509
Optimizing Vitamin-Mineral Supplementation in King Grass-Based Rations to Maximize Productivity of Bali Cattle. Ida Bagus Gaga Partama................................. 516
Utilization of Sunflower Seeds Oil and Sardine to Get Goat's Milk Has Balanced Omega 3 and Omega 6 Ratio. A.I. Fajri, M. Arifin, E. Burton, A.C. Romadhoni, S. Syafiaah, & R.R.A. Maheswari................................. 528

ANIMAL MANAGEMENT AND PRODUCTION

Factors Affecting to Biosecurity Adoption on Laying Hen Farmers. V.S. Lestari, S.N. Sirajuddin, I. Rasyid, & K. Kasim .. 535

Proceeding of the 2nd International Seminar on Animal Industry | Jakarta, 5-6 July 2012
The Perception of Beef Cattle's Farmers on Implementation of Artificial Insemination in Three Central Areas of Beef Cattle in Indonesia. Mursyid Ma'sum & Amiruddin Saleh .. 541

The Characteristic of Farming System for The Walik Chicken in West Java, Indonesia. Maria Ulfah, Sri Mulatsih, & Neng Mega Nurapriani................................. 548

Effect of Climate Change on Livestock Production in Pakistan. Muhammad Younas, Kashif Ishaq, & Iftikhar Ali... 554

Performance of Pre-weaning Javanese Thin-Tail Lambs under Semi-Intensive Management at Different Age and Sex. M. Baihaqi, S. Rahayu, & Y. Saputra... 562

Development Strategy of Small-scale Beekeeping (Case Study in Kampung Nyalenghor, District Pagerageung, Tasikmalaya Regency). V. Chadizaviary, L. Cyrilla, & H. C. H. Siregar.. 568

ANIMAL PRODUCT'S TECHNOLOGY ... 573

Protein Quality of Fermented Beef by Lactobacillus plantarum 1Bl. I. I. Arief, R.R.A. Maheswari, T. Suryati, & N. Kurniawati.. 575

Properties of Salt Coagulated Cheese Produced by Calcium Chloride and Calcium Propionate. Aphirak Phianmongkhlo & Tri Indrarini Wirjantoro............. 587

Wool Fibre of Local and Crossbred Sheep: Production, Processing Technique and Performance. Mohamad Yamin & Sri Rahayu... 593

Fiber Quality of Carpet-wool Sheep Breeds. H. R. Ansari-Renani & S. Moradi...... 599

Training Programme of Biogas to Minimize Environmental Pollution in the Tempok Village Sub Tompaso District. Femi H. Elly .. 606

Microbiological Characteristic and Antimicrobial Activity of Koumiss Against Salmonella typhimurium and Mycobacterium tuberculosis. R. Yahya, R. R. A. Maheswari, & R. H. Mulyono ... 612

Potency of Wool Handicrafts Production in Indonesia. Mohamad Yamin & Sri Mulatsih .. 618

Physical, Chemical, and Microbiological Characteristics of Healthy Drink that Contains Honey and Duck Egg Yolk in Difference Age. Z. Wulandari, R.R.A. Maheswari, & S.M. Anggraini .. 624

Microbiological Quality of Probiotic Yoghurt Jelly Drink During Storage in Refrigerator. G.S. Adhitama, R.R.A. Maheswari, & Z. Wulandari.......................... 631
Tenderness and Cooking Loss of Yearling Brahman Cross and Mature Ongole Cross Beef Treated Tenderizing Method. Tuti Suryati, Irma Isnafia Arief, & Bernadeth Nenny Polii. ... 636

SOCIAL ECONOMICS AND POLICY IN ANIMAL PRODUCTION 649
Productivity of Kalung Crickets (Gryllus bimaculatus) Cultivation (Case Study in Central and East Java). Y. P. Rahmawati, H. C. H. Siregar, & L. Cyrilla......... 651
Public Perception in Thai Native Chicken (Pradu Hang-Dum Chiang Mai) via Food Contests. Aphirak Phianmongkhol, Tri Indrarini Wirjantoro, Charan Chailungka, Chartri Prathum, & Amnuay Leotaragul.......................... 656
Trade Performance of Meat and Meat Preparation Sector in Malaysia: The Case of Non-Ruminant. Mohd Mansor Ismail & Mohammad Amiz.. A........ 663
Integration of Cattle-coconut Farming in South Minahasa Regency. Artise H.S. Salendu, Maryunani, Soemarno, & B. Polii.. 669
Applicative Model in Utilizing Mulberry Plant as a Worth Feed Resource for Increasing Farmers’ Income. Syahrir, S. & A. Natsir............................ 675

ANIMAL HEALTH AND DISEASE PREVENTION 681
Anatomy and Morphometry of Reproductive Organ of Male Mouse Deer (Tragulus javanicus). Najamudin, Amrozi, Srihadi Agungpriyono, & Tuty Laswardi Yusuf ... 683
Effectiveness of Lactobacillus acidophilus 2B4 as Biocontrol to Prevent Salmonella enteritidis Infection on Laying Hens. Niken Ulupi, Irma Isnafia Arief, Bram Brahmaniyo, & Kharisma Eka Riwayati............................ 689

List of Participant ... 695
List of Committee ... 707
Index of Author ... 709
Acknowledgment .. 713
Training Programme of Biogas to Minimize Environmental Pollution in the Tempok Village Sub Tomposo District

Femi H. Elly

Social-Economic Department, Animal Husbandry Faculty, The University of Sam Ratulangi Manado, Jl. Kampus Bahu Kleak Manado, Sulawesi Utara, Indonesia, 95115 e-mail: femi.elly@yahoo.com

Abstract

The cattle in the village Tempok traditionally maintained, in the sense that no caged animals. On the afternoon of cattle grazing in the garden, the evening brought home and left on the home page. The problem, waste of cattle can cause environmental pollution. Based on the problems of making biogas training was conducted with the aim to increase knowledge and awareness of peasant farmers in minimizing environmental pollution and produce biogas reactor. The goal of this group was the farmers' cattle Pinatoroan and Samperongan. The method used of the application of science and technology was extension and training program of making biogas. Waste of cattle produces methane (CH4), which can increase greenhouse gas emissions. One of the activities that can be done is processing of biogas as an effort to improve environmental quality. Biogas reactor is made of 2 pieces and has successfully seen the fire coming out of the stove. This activity is done to reduce greenhouse gas emissions produced from waste of cattle. The result of the application of science and technology was to increase knowledge and awareness of peasant farmers in minimizing environmental pollution. Biogas reactor produces gas as a fuel substitute. Benefits derived from these activities is to reduce expenditures for kerosene, reducing the dependence on fuel wood, the home page be clean, pleasing to the eye and reduce odor.

Keywords: biogas, cattle waste, environment

Introduction

According to Putro (2007), global energy crisis caused world oil prices reached U.S. $ 70/barrel. This condition influenced the life of Indonesian including rural people of the districts Tomposo. There is a need to provide an alternative energy supply through development non-fuel energy technologies which are environmentally friendly.
flammable gas. The CH₄ gas content in the biogas produced from cattle waste in this training were about 60%.

The biogas reactor was connected to the reservoir gas, methane gas generated out through the hose to the gas reservoir. The resulting methane gas can come out through the hose from the gas reservoir to the gas stove. After 4 weeks, the gas can be heated up and used for cooking. Biogas production could partially replace fossil fuel energy so as to reduce the environmental impact. Biogas was cleaner fuels and renewable energy (Schievano et al., 2009). Furthermore, Barnhart (2012) said that household-scale biogas technology could be used for cooking as a substitute to firewood and improved human health and the environment.

Training of making biogas for cattle farmers in the village of Tempok very beneficial to the availability of fuel energy. As a result, household expenditures for kerosene, which was increasingly expensive and scarce, could be suppressed. In addition, this activity could be beneficial for reduction of environmental pollution. According to Simpson (1979), biogas production may also benefited from reduction of flies and mosquitoes reproduction cycle. While, Aklaku et al (2006) explained that the presence of biogas as an energy source would free the farmer from the dependence on wood fuel, reduced bad smell and the presence of animal pests such as flies. According Biyatmoko and Wijokongko (2011), an important benefit of biogas as a fuel alternative was because of it was cheap, the raw materials were easily available, and because it was environmentally friendly. Methane gas that will burn and destroy ozone could be optimally utilized as a source of fuel in rural communities.

According Amjid et al (2011), the opportunity cost of women increased in the presence of biogas and gave a positive impact on households. But its application as an alternative energy source was limited because of several problems including costly investment for development of each farmer. Widodo et al (2009) conducted a
Based on joint decision of the Minister of Home Affairs and Minister of Agriculture, No. 54 of year 1996: 304/KPTS/L.P.120/4/96, about Guidelines for Implementation of Agricultural Extension, a program to improve farmer groups, based on local conditions and potential resources, and considering the strategic environment that influence it, have been run (Department of Animal Husbandry, 1998). The program was primarily intended for low income rural households. One energy technology in accordance with the requirements of the rural households was biogas technology. According to Srisertpol et al. (2010), biogas was one kind of energy and sustainable development that were essential to energy and environmental planning. Biogas from cattle waste could substitute kerosene which were expensive and scarce in rural area.

In District Tompaso there were two groups of cattle farmers, namely group of cattle farmers Pinatoroan and Samperongan. The groups maintained their cattle traditionally and extensively. On the morning until late afternoon the cattle were let grazing in the field. In the afternoon, around 18:00 o’clock, the cattle were brought back and let slept in their home yard. The system caused environmental problem due to unmanaged of the cattle dunk(El-Hadidi and A-Turki, 2007).

Based on these problems, we conducted a program to use cattle waste to make biogas. The purpose of program was to train members of the cattle farmer groups to convert their cattle waste into biogas. This program were consisted of two activities namely extention service and training. These activities were done as efforts to increase awareness of the cattle farmers in minimizing environmental pollution.

Materials and Methods

Based on the background and the problems above, extention service and training for groups of cattle farmers Semporongan and Pinotoroan have been conducted. Pinotoroan group consisted of 23 members while the Samperongan group have 20 members. In livestock development, especially beef cattle, extension service take an important role especially in strengthening of farmer groups and increase adoption of farm technology (Abdullah, 2008). Extension service that have been conducted in the rural Tempok were aimed at changing of the farmer behavior toward a better direction (Pambudy, 1999). Materials and media used were brochures and LCD projector. After the extension services, the farmers were trained in making biogas reactor and how to produce biogas. Materials and equipment used was waste of cattle, two old drum container, hoses, and gas stove. Extension service have been successfully carried out can be seen from the compactness of the group members in response to the manufacture of biogas. Technology adoption is measured from the biogas reactor has been successful in producing a flame.
Results and Discussion

The number of cattle owned by members of the Semporongan group was 55 and Pinatoroan group owned 64 cattle. The cattle were privately owned by the group. The cattle released waste daily. Unmanaged cattle waste produced methane (CH₄), which increased greenhouse gas emissions (GHG). Methane was a greenhouse gas that accumulates in the atmosphere due to human activities (Masse et al., 2003). Therefore, cattle farming has been blamed to cause global warming.

Livestock waste was a potential source of CH₄ emissions (Moss, 1993 in Masse et al., 2003). Therefore, it should be converted into biogas. According to Yiridoe et al. (2009), production of biogas in general, was considered financially feasible if it was made from 50 cows or 200 sows.

In average, a family energy needs for cooking was 2000 liters per day. According Putro (2007), household cooking energy needs can be met from waste of 3 cattle. Therefore, biogas produced by the group was considered financially feasible (numbers of cattle owned by the group were more than 50 with average of cattle owned was 3).

Biogas technology has been introduced and developed quite a long time in Indonesia (Widodo et al., 2009). Biogas technology can be applied to the scale of household, commercial or village (Eze, 2009). Bond and Templeton (2011) explained that the biogas contains 50-70% CH₄ and 30-50% CO₂. In nature, methane gas was always there, but there was a need for equipment and specific conditions to accelerate the formation of gas (Putro, 2007).

Biogas reactor was a device that can process waste into biogas. Each biogas reactor unit had been made from two drum container. The other two drums were used to build a gas reservoir. Cattle waste was mixed with water in the ratio 1:1, stirred until dissolved and then inserted into the biogas reactor. Biogas reactor was made simply to be accessible to the farmers (Figure 1). Lo et al. (1984) noted that unwillingness of North American farmers to adopt the biogas technology were due to the high capital investment for construction of biogas. The earlier reactor had been made for converting pig waste (Adl et al., 2012).

A larger drum with a capacity of 200 liters were filled with water. The drum served as a control gas formation. Then a smaller drum with a capacity of 120 liters were then be put into the larger. The drum were fed with fresh cattle waste every day. The biogas process could reduce the ratio of carbon to nitrogen (C/N) 21.82 to 14.19 (Chen et al, 2010).

The biogas were resulted after 3-4 weeks of cattle waste conversion in the biogas reactor. Biogas was produced by bacteria that convert organic material in the absence of oxygen (anaerobic process) (Putro, 2007). This process took place during processing or fermentation. The resulted gas was consisted mainly out of CH₄ and CO₂. If the content of CH₄ gas was more than 50%, then the mixture was highly
study to develop a biogas reactor for scale of the group farmers. In this case the development of the village Tempok need government intervention. According Biyatmoko and Wijokongko (2011), there was an urgency for socialisation of biogas uses and improving public perceiving in biogas utilization. This condition, especially in rural communities, including improvement of capacity in technical and management digester care.

Conclusion

Application of science and technology can improve farmer knowledge and awareness of in minimizing environmental pollution. The availability of two units of biogas reactor in the Tempok Village produced gas that can be used as a fuel substitute for petroleum. Benefits derived from these activities were reduction of expenditures for kerosene, reducing the dependence on fuel wood, produced a better environment for the farmer by means of cleaner yard and less smell of cattle waste.

References

